| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chfacfisf.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | chfacfisf.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | chfacfisf.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | chfacfisf.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | chfacfisf.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 6 |  | chfacfisf.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 7 |  | chfacfisf.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 8 |  | chfacfisf.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 9 |  | chfacfisf.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 10 |  | chfacfscmulcl.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 11 |  | chfacfscmulcl.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 12 |  | chfacfscmulcl.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 13 |  | chfacfscmulgsum.p | ⊢  +   =  ( +g ‘ 𝑌 ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 15 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 16 | 15 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 17 | 16 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 18 | 3 4 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  Ring ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Ring ) | 
						
							| 20 |  | ringcmn | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  CMnd ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  CMnd ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑌  ∈  CMnd ) | 
						
							| 23 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 24 | 23 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ℕ0  ∈  V ) | 
						
							| 25 |  | simpll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 ) ) | 
						
							| 26 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ℕ0 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 28 | 25 26 27 | 3jca | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑖  ∈  ℕ0 ) ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 10 11 12 | chfacfscmulcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 31 | 1 2 3 4 5 6 7 8 9 10 11 12 | chfacfscmulfsupp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) )  finSupp   0  ) | 
						
							| 32 |  | nn0disj | ⊢ ( ( 0 ... ( 𝑠  +  1 ) )  ∩  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) )  =  ∅ | 
						
							| 33 | 32 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 0 ... ( 𝑠  +  1 ) )  ∩  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) )  =  ∅ ) | 
						
							| 34 |  | nnnn0 | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℕ0 ) | 
						
							| 35 |  | peano2nn0 | ⊢ ( 𝑠  ∈  ℕ0  →  ( 𝑠  +  1 )  ∈  ℕ0 ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑠  +  1 )  ∈  ℕ0 ) | 
						
							| 37 |  | nn0split | ⊢ ( ( 𝑠  +  1 )  ∈  ℕ0  →  ℕ0  =  ( ( 0 ... ( 𝑠  +  1 ) )  ∪  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( 𝑠  ∈  ℕ  →  ℕ0  =  ( ( 0 ... ( 𝑠  +  1 ) )  ∪  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) ) ) | 
						
							| 39 | 38 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ℕ0  =  ( ( 0 ... ( 𝑠  +  1 ) )  ∪  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) ) ) | 
						
							| 40 | 14 7 13 22 24 30 31 33 39 | gsumsplit2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 41 |  | simpll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 ) ) | 
						
							| 42 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) )  →  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 43 |  | nncn | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℂ ) | 
						
							| 44 |  | add1p1 | ⊢ ( 𝑠  ∈  ℂ  →  ( ( 𝑠  +  1 )  +  1 )  =  ( 𝑠  +  2 ) ) | 
						
							| 45 | 43 44 | syl | ⊢ ( 𝑠  ∈  ℕ  →  ( ( 𝑠  +  1 )  +  1 )  =  ( 𝑠  +  2 ) ) | 
						
							| 46 | 45 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑠  +  1 )  +  1 )  =  ( 𝑠  +  2 ) ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑠  +  2 ) ) ) | 
						
							| 48 | 47 | eleq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↔  𝑖  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) ) ) ) | 
						
							| 49 | 48 | biimpa | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) )  →  𝑖  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) ) ) | 
						
							| 50 | 1 2 3 4 5 6 7 8 9 10 11 12 | chfacfscmul0 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) ) )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =   0  ) | 
						
							| 51 | 41 42 49 50 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =   0  ) | 
						
							| 52 | 51 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) )  =  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦   0  ) ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦   0  ) ) ) | 
						
							| 54 | 15 18 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  Ring ) | 
						
							| 55 |  | ringmnd | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Mnd ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  Mnd ) | 
						
							| 57 | 56 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Mnd ) | 
						
							| 58 |  | fvex | ⊢ ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ∈  V | 
						
							| 59 | 57 58 | jctir | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑌  ∈  Mnd  ∧  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ∈  V ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  ∈  Mnd  ∧  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ∈  V ) ) | 
						
							| 61 | 7 | gsumz | ⊢ ( ( 𝑌  ∈  Mnd  ∧  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ∈  V )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦   0  ) )  =   0  ) | 
						
							| 62 | 60 61 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦   0  ) )  =   0  ) | 
						
							| 63 | 53 62 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  =   0  ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +   0  ) ) | 
						
							| 65 |  | fzfid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 0 ... ( 𝑠  +  1 ) )  ∈  Fin ) | 
						
							| 66 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 67 | 66 28 | sylan2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑖  ∈  ℕ0 ) ) | 
						
							| 68 | 67 29 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) ) )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 69 | 68 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) ) ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 70 | 14 22 65 69 | gsummptcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 71 | 14 13 7 | mndrid | ⊢ ( ( 𝑌  ∈  Mnd  ∧  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +   0  )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) | 
						
							| 72 | 57 70 71 | syl2an2r | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +   0  )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) | 
						
							| 73 | 64 72 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) | 
						
							| 74 | 34 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑠  ∈  ℕ0 ) | 
						
							| 75 | 14 13 22 74 68 | gsummptfzsplit | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  { ( 𝑠  +  1 ) }  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 76 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑠 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 77 | 76 30 | sylan2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 78 | 14 13 22 74 77 | gsummptfzsplitl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  { 0 }  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 79 | 57 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑌  ∈  Mnd ) | 
						
							| 80 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 81 | 80 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  0  ∈  ℕ0 ) | 
						
							| 82 | 1 2 3 4 5 6 7 8 9 10 11 12 | chfacfscmulcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  0  ∈  ℕ0 )  →  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 83 | 81 82 | mpd3an3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 84 |  | oveq1 | ⊢ ( 𝑖  =  0  →  ( 𝑖  ↑  𝑋 )  =  ( 0  ↑  𝑋 ) ) | 
						
							| 85 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 86 | 84 85 | oveq12d | ⊢ ( 𝑖  =  0  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 87 | 14 86 | gsumsn | ⊢ ( ( 𝑌  ∈  Mnd  ∧  0  ∈  ℕ0  ∧  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  { 0 }  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 88 | 79 81 83 87 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  { 0 }  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 89 | 88 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  { 0 }  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) ) ) ) | 
						
							| 90 | 78 89 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) ) ) ) | 
						
							| 91 |  | ovexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑠  +  1 )  ∈  V ) | 
						
							| 92 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 93 | 92 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  1  ∈  ℕ0 ) | 
						
							| 94 | 74 93 | nn0addcld | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑠  +  1 )  ∈  ℕ0 ) | 
						
							| 95 | 1 2 3 4 5 6 7 8 9 10 11 12 | chfacfscmulcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  ( 𝑠  +  1 )  ∈  ℕ0 )  →  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 96 | 94 95 | mpd3an3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 97 |  | oveq1 | ⊢ ( 𝑖  =  ( 𝑠  +  1 )  →  ( 𝑖  ↑  𝑋 )  =  ( ( 𝑠  +  1 )  ↑  𝑋 ) ) | 
						
							| 98 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝑠  +  1 )  →  ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) | 
						
							| 99 | 97 98 | oveq12d | ⊢ ( 𝑖  =  ( 𝑠  +  1 )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) | 
						
							| 100 | 14 99 | gsumsn | ⊢ ( ( 𝑌  ∈  Mnd  ∧  ( 𝑠  +  1 )  ∈  V  ∧  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  { ( 𝑠  +  1 ) }  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) | 
						
							| 101 | 79 91 96 100 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  { ( 𝑠  +  1 ) }  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) | 
						
							| 102 | 90 101 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  { ( 𝑠  +  1 ) }  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) ) )  =  ( ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) ) )  +  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) ) | 
						
							| 103 |  | fzfid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 1 ... 𝑠 )  ∈  Fin ) | 
						
							| 104 |  | simpll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 ) ) | 
						
							| 105 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 106 |  | elfznn | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ∈  ℕ ) | 
						
							| 107 | 106 | nnnn0d | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 108 | 107 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 109 | 104 105 108 29 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 110 | 109 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑠 ) ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 111 | 14 22 103 110 | gsummptcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 112 | 14 13 | mndass | ⊢ ( ( 𝑌  ∈  Mnd  ∧  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ 𝑌 )  ∧  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 )  ∧  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) ) )  +  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) )  +  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) ) ) | 
						
							| 113 | 79 111 83 96 112 | syl13anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) ) )  +  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) )  +  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) ) ) | 
						
							| 114 | 106 | nnne0d | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ≠  0 ) | 
						
							| 115 | 114 | ad2antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑖  ≠  0 ) | 
						
							| 116 |  | neeq1 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑛  ≠  0  ↔  𝑖  ≠  0 ) ) | 
						
							| 117 | 116 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  ( 𝑛  ≠  0  ↔  𝑖  ≠  0 ) ) | 
						
							| 118 | 115 117 | mpbird | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑛  ≠  0 ) | 
						
							| 119 |  | eqneqall | ⊢ ( 𝑛  =  0  →  ( 𝑛  ≠  0  →   0   =  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) ) ) | 
						
							| 120 | 118 119 | mpan9 | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →   0   =  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) ) | 
						
							| 121 |  | simplr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  𝑛  =  𝑖 ) | 
						
							| 122 |  | eqeq1 | ⊢ ( 0  =  𝑛  →  ( 0  =  𝑖  ↔  𝑛  =  𝑖 ) ) | 
						
							| 123 | 122 | eqcoms | ⊢ ( 𝑛  =  0  →  ( 0  =  𝑖  ↔  𝑛  =  𝑖 ) ) | 
						
							| 124 | 123 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  ( 0  =  𝑖  ↔  𝑛  =  𝑖 ) ) | 
						
							| 125 | 121 124 | mpbird | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  0  =  𝑖 ) | 
						
							| 126 | 125 | fveq2d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  ( 𝑏 ‘ 0 )  =  ( 𝑏 ‘ 𝑖 ) ) | 
						
							| 127 | 126 | fveq2d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) | 
						
							| 128 | 127 | oveq2d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  =  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) | 
						
							| 129 | 120 128 | oveq12d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 130 |  | elfz2 | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  ↔  ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  ( 1  ≤  𝑖  ∧  𝑖  ≤  𝑠 ) ) ) | 
						
							| 131 |  | zleltp1 | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑠  ∈  ℤ )  →  ( 𝑖  ≤  𝑠  ↔  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 132 | 131 | ancoms | ⊢ ( ( 𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ≤  𝑠  ↔  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 133 | 132 | 3adant1 | ⊢ ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ≤  𝑠  ↔  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 134 | 133 | biimpcd | ⊢ ( 𝑖  ≤  𝑠  →  ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 135 | 134 | adantl | ⊢ ( ( 1  ≤  𝑖  ∧  𝑖  ≤  𝑠 )  →  ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 136 | 135 | impcom | ⊢ ( ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  ( 1  ≤  𝑖  ∧  𝑖  ≤  𝑠 ) )  →  𝑖  <  ( 𝑠  +  1 ) ) | 
						
							| 137 | 136 | orcd | ⊢ ( ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  ( 1  ≤  𝑖  ∧  𝑖  ≤  𝑠 ) )  →  ( 𝑖  <  ( 𝑠  +  1 )  ∨  ( 𝑠  +  1 )  <  𝑖 ) ) | 
						
							| 138 |  | zre | ⊢ ( 𝑠  ∈  ℤ  →  𝑠  ∈  ℝ ) | 
						
							| 139 |  | 1red | ⊢ ( 𝑠  ∈  ℤ  →  1  ∈  ℝ ) | 
						
							| 140 | 138 139 | readdcld | ⊢ ( 𝑠  ∈  ℤ  →  ( 𝑠  +  1 )  ∈  ℝ ) | 
						
							| 141 |  | zre | ⊢ ( 𝑖  ∈  ℤ  →  𝑖  ∈  ℝ ) | 
						
							| 142 | 140 141 | anim12ci | ⊢ ( ( 𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ∈  ℝ  ∧  ( 𝑠  +  1 )  ∈  ℝ ) ) | 
						
							| 143 | 142 | 3adant1 | ⊢ ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ∈  ℝ  ∧  ( 𝑠  +  1 )  ∈  ℝ ) ) | 
						
							| 144 |  | lttri2 | ⊢ ( ( 𝑖  ∈  ℝ  ∧  ( 𝑠  +  1 )  ∈  ℝ )  →  ( 𝑖  ≠  ( 𝑠  +  1 )  ↔  ( 𝑖  <  ( 𝑠  +  1 )  ∨  ( 𝑠  +  1 )  <  𝑖 ) ) ) | 
						
							| 145 | 143 144 | syl | ⊢ ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ≠  ( 𝑠  +  1 )  ↔  ( 𝑖  <  ( 𝑠  +  1 )  ∨  ( 𝑠  +  1 )  <  𝑖 ) ) ) | 
						
							| 146 | 145 | adantr | ⊢ ( ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  ( 1  ≤  𝑖  ∧  𝑖  ≤  𝑠 ) )  →  ( 𝑖  ≠  ( 𝑠  +  1 )  ↔  ( 𝑖  <  ( 𝑠  +  1 )  ∨  ( 𝑠  +  1 )  <  𝑖 ) ) ) | 
						
							| 147 | 137 146 | mpbird | ⊢ ( ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  ( 1  ≤  𝑖  ∧  𝑖  ≤  𝑠 ) )  →  𝑖  ≠  ( 𝑠  +  1 ) ) | 
						
							| 148 | 130 147 | sylbi | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ≠  ( 𝑠  +  1 ) ) | 
						
							| 149 | 148 | ad2antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑖  ≠  ( 𝑠  +  1 ) ) | 
						
							| 150 |  | neeq1 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑛  ≠  ( 𝑠  +  1 )  ↔  𝑖  ≠  ( 𝑠  +  1 ) ) ) | 
						
							| 151 | 150 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  ( 𝑛  ≠  ( 𝑠  +  1 )  ↔  𝑖  ≠  ( 𝑠  +  1 ) ) ) | 
						
							| 152 | 149 151 | mpbird | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑛  ≠  ( 𝑠  +  1 ) ) | 
						
							| 153 | 152 | adantr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  →  𝑛  ≠  ( 𝑠  +  1 ) ) | 
						
							| 154 | 153 | neneqd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  →  ¬  𝑛  =  ( 𝑠  +  1 ) ) | 
						
							| 155 | 154 | pm2.21d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  →  ( 𝑛  =  ( 𝑠  +  1 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 156 | 155 | imp | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  =  ( 𝑠  +  1 ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 157 | 106 | nnred | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ∈  ℝ ) | 
						
							| 158 |  | eleq1w | ⊢ ( 𝑛  =  𝑖  →  ( 𝑛  ∈  ℝ  ↔  𝑖  ∈  ℝ ) ) | 
						
							| 159 | 157 158 | syl5ibrcom | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  ( 𝑛  =  𝑖  →  𝑛  ∈  ℝ ) ) | 
						
							| 160 | 159 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑛  =  𝑖  →  𝑛  ∈  ℝ ) ) | 
						
							| 161 | 160 | imp | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑛  ∈  ℝ ) | 
						
							| 162 | 74 | nn0red | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 163 | 162 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑠  ∈  ℝ ) | 
						
							| 164 |  | 1red | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  1  ∈  ℝ ) | 
						
							| 165 | 163 164 | readdcld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  ( 𝑠  +  1 )  ∈  ℝ ) | 
						
							| 166 | 130 136 | sylbi | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  <  ( 𝑠  +  1 ) ) | 
						
							| 167 | 166 | ad2antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑖  <  ( 𝑠  +  1 ) ) | 
						
							| 168 |  | breq1 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑛  <  ( 𝑠  +  1 )  ↔  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 169 | 168 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  ( 𝑛  <  ( 𝑠  +  1 )  ↔  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 170 | 167 169 | mpbird | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑛  <  ( 𝑠  +  1 ) ) | 
						
							| 171 | 161 165 170 | ltnsymd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  ¬  ( 𝑠  +  1 )  <  𝑛 ) | 
						
							| 172 | 171 | pm2.21d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  ( ( 𝑠  +  1 )  <  𝑛  →   0   =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 173 | 172 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  →  ( ( 𝑠  +  1 )  <  𝑛  →   0   =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 174 | 173 | imp | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ( 𝑠  +  1 )  <  𝑛 )  →   0   =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 175 |  | simp-4r | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  𝑛  =  𝑖 ) | 
						
							| 176 | 175 | fvoveq1d | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( 𝑏 ‘ ( 𝑛  −  1 ) )  =  ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) | 
						
							| 177 | 176 | fveq2d | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) ) | 
						
							| 178 | 175 | fveq2d | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( 𝑏 ‘ 𝑛 )  =  ( 𝑏 ‘ 𝑖 ) ) | 
						
							| 179 | 178 | fveq2d | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) | 
						
							| 180 | 179 | oveq2d | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  =  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) | 
						
							| 181 | 177 180 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 182 | 174 181 | ifeqda | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  →  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 183 | 156 182 | ifeqda | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  →  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 184 | 129 183 | ifeqda | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 185 |  | ovexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  ∈  V ) | 
						
							| 186 | 9 184 108 185 | fvmptd2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝐺 ‘ 𝑖 )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 187 | 186 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 188 | 187 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) )  =  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 189 | 188 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) ) | 
						
							| 190 |  | nn0p1gt0 | ⊢ ( 𝑠  ∈  ℕ0  →  0  <  ( 𝑠  +  1 ) ) | 
						
							| 191 |  | 0red | ⊢ ( 𝑠  ∈  ℕ0  →  0  ∈  ℝ ) | 
						
							| 192 |  | ltne | ⊢ ( ( 0  ∈  ℝ  ∧  0  <  ( 𝑠  +  1 ) )  →  ( 𝑠  +  1 )  ≠  0 ) | 
						
							| 193 | 191 192 | sylan | ⊢ ( ( 𝑠  ∈  ℕ0  ∧  0  <  ( 𝑠  +  1 ) )  →  ( 𝑠  +  1 )  ≠  0 ) | 
						
							| 194 |  | neeq1 | ⊢ ( 𝑛  =  ( 𝑠  +  1 )  →  ( 𝑛  ≠  0  ↔  ( 𝑠  +  1 )  ≠  0 ) ) | 
						
							| 195 | 193 194 | syl5ibrcom | ⊢ ( ( 𝑠  ∈  ℕ0  ∧  0  <  ( 𝑠  +  1 ) )  →  ( 𝑛  =  ( 𝑠  +  1 )  →  𝑛  ≠  0 ) ) | 
						
							| 196 | 34 190 195 | syl2anc2 | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑛  =  ( 𝑠  +  1 )  →  𝑛  ≠  0 ) ) | 
						
							| 197 | 196 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑛  =  ( 𝑠  +  1 )  →  𝑛  ≠  0 ) ) | 
						
							| 198 | 197 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  =  ( 𝑠  +  1 ) )  →  𝑛  ≠  0 ) | 
						
							| 199 |  | eqneqall | ⊢ ( 𝑛  =  0  →  ( 𝑛  ≠  0  →  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) | 
						
							| 200 | 198 199 | mpan9 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  =  ( 𝑠  +  1 ) )  ∧  𝑛  =  0 )  →  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) | 
						
							| 201 |  | iftrue | ⊢ ( 𝑛  =  ( 𝑠  +  1 )  →  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) | 
						
							| 202 | 201 | ad2antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  𝑛  =  0 )  →  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) | 
						
							| 203 | 200 202 | ifeqda | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  =  ( 𝑠  +  1 ) )  →  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) | 
						
							| 204 | 74 35 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑠  +  1 )  ∈  ℕ0 ) | 
						
							| 205 |  | fvexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) )  ∈  V ) | 
						
							| 206 | 9 203 204 205 | fvmptd2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝐺 ‘ ( 𝑠  +  1 ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) | 
						
							| 207 | 206 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  =  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) | 
						
							| 208 | 15 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 209 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 210 | 10 3 209 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 211 | 208 210 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 212 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 213 | 212 209 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 214 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 215 | 212 214 | ringidval | ⊢ ( 1r ‘ 𝑃 )  =  ( 0g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 216 | 213 215 12 | mulg0 | ⊢ ( 𝑋  ∈  ( Base ‘ 𝑃 )  →  ( 0  ↑  𝑋 )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 217 | 211 216 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 0  ↑  𝑋 )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 218 | 3 | ply1crng | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing ) | 
						
							| 219 | 218 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing ) ) | 
						
							| 220 | 219 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing ) ) | 
						
							| 221 | 4 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝑌 ) ) | 
						
							| 222 | 220 221 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑃  =  ( Scalar ‘ 𝑌 ) ) | 
						
							| 223 | 222 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 1r ‘ 𝑃 )  =  ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 224 | 217 223 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 0  ↑  𝑋 )  =  ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 225 | 224 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 0  ↑  𝑋 )  =  ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 226 | 225 | oveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) )  =  ( ( 1r ‘ ( Scalar ‘ 𝑌 ) )  ·  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 227 | 3 4 | pmatlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  LMod ) | 
						
							| 228 | 15 227 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  LMod ) | 
						
							| 229 | 228 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  LMod ) | 
						
							| 230 | 1 2 3 4 5 6 7 8 9 | chfacfisf | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 231 | 15 230 | syl3anl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 232 | 231 81 | ffvelcdmd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝐺 ‘ 0 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 233 |  | eqid | ⊢ ( Scalar ‘ 𝑌 )  =  ( Scalar ‘ 𝑌 ) | 
						
							| 234 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑌 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑌 ) ) | 
						
							| 235 | 14 233 11 234 | lmodvs1 | ⊢ ( ( 𝑌  ∈  LMod  ∧  ( 𝐺 ‘ 0 )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝑌 ) )  ·  ( 𝐺 ‘ 0 ) )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 236 | 229 232 235 | syl2an2r | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝑌 ) )  ·  ( 𝐺 ‘ 0 ) )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 237 |  | iftrue | ⊢ ( 𝑛  =  0  →  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  =  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) | 
						
							| 238 |  | ovexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  ∈  V ) | 
						
							| 239 | 9 237 81 238 | fvmptd3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝐺 ‘ 0 )  =  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) | 
						
							| 240 | 226 236 239 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) )  =  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) | 
						
							| 241 | 207 240 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  +  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) ) )  =  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  +  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 242 | 14 13 | cmncom | ⊢ ( ( 𝑌  ∈  CMnd  ∧  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 )  ∧  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) )  +  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) )  =  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  +  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) ) ) ) | 
						
							| 243 | 22 83 96 242 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) )  +  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) )  =  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  +  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) ) ) ) | 
						
							| 244 |  | ringgrp | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Grp ) | 
						
							| 245 | 19 244 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Grp ) | 
						
							| 246 | 245 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑌  ∈  Grp ) | 
						
							| 247 | 207 96 | eqeltrrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 248 | 19 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑌  ∈  Ring ) | 
						
							| 249 | 8 1 2 3 4 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 250 | 15 249 | syl3an2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 251 | 250 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 252 |  | simpl1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑁  ∈  Fin ) | 
						
							| 253 | 208 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 254 |  | elmapi | ⊢ ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 255 | 254 | adantl | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 256 | 255 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 257 |  | 0elfz | ⊢ ( 𝑠  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 258 | 34 257 | syl | ⊢ ( 𝑠  ∈  ℕ  →  0  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 259 | 258 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  0  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 260 | 256 259 | ffvelcdmd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑏 ‘ 0 )  ∈  𝐵 ) | 
						
							| 261 | 8 1 2 3 4 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ 0 )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 262 | 252 253 260 261 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 263 | 14 5 | ringcl | ⊢ ( ( 𝑌  ∈  Ring  ∧  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 )  ∧  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 264 | 248 251 262 263 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 265 | 14 7 6 13 | grpsubadd0sub | ⊢ ( ( 𝑌  ∈  Grp  ∧  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  ∈  ( Base ‘ 𝑌 )  ∧  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  =  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  +  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 266 | 246 247 264 265 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  =  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  +  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 267 | 241 243 266 | 3eqtr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) )  +  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) )  =  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) | 
						
							| 268 | 189 267 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) )  +  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 269 | 113 268 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( 0  ↑  𝑋 )  ·  ( 𝐺 ‘ 0 ) ) )  +  ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 270 | 75 102 269 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 271 | 40 73 270 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |