| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chfacfisf.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | chfacfisf.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | chfacfisf.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | chfacfisf.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | chfacfisf.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 6 |  | chfacfisf.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 7 |  | chfacfisf.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 8 |  | chfacfisf.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 9 |  | chfacfisf.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 10 |  | chfacfscmulcl.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 11 |  | chfacfscmulcl.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 12 |  | chfacfscmulcl.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 13 | 7 | fvexi | ⊢  0   ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →   0   ∈  V ) | 
						
							| 15 |  | ovexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  ∈  V ) | 
						
							| 16 |  | nnnn0 | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℕ0 ) | 
						
							| 17 |  | peano2nn0 | ⊢ ( 𝑠  ∈  ℕ0  →  ( 𝑠  +  1 )  ∈  ℕ0 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑠  +  1 )  ∈  ℕ0 ) | 
						
							| 19 | 18 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑠  +  1 )  ∈  ℕ0 ) | 
						
							| 20 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 21 |  | csbov12g | ⊢ ( 𝑘  ∈  V  →  ⦋ 𝑘  /  𝑖 ⦌ ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =  ( ⦋ 𝑘  /  𝑖 ⦌ ( 𝑖  ↑  𝑋 )  ·  ⦋ 𝑘  /  𝑖 ⦌ ( 𝐺 ‘ 𝑖 ) ) ) | 
						
							| 22 |  | csbov1g | ⊢ ( 𝑘  ∈  V  →  ⦋ 𝑘  /  𝑖 ⦌ ( 𝑖  ↑  𝑋 )  =  ( ⦋ 𝑘  /  𝑖 ⦌ 𝑖  ↑  𝑋 ) ) | 
						
							| 23 |  | csbvarg | ⊢ ( 𝑘  ∈  V  →  ⦋ 𝑘  /  𝑖 ⦌ 𝑖  =  𝑘 ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( 𝑘  ∈  V  →  ( ⦋ 𝑘  /  𝑖 ⦌ 𝑖  ↑  𝑋 )  =  ( 𝑘  ↑  𝑋 ) ) | 
						
							| 25 | 22 24 | eqtrd | ⊢ ( 𝑘  ∈  V  →  ⦋ 𝑘  /  𝑖 ⦌ ( 𝑖  ↑  𝑋 )  =  ( 𝑘  ↑  𝑋 ) ) | 
						
							| 26 |  | csbfv | ⊢ ⦋ 𝑘  /  𝑖 ⦌ ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑘 ) | 
						
							| 27 | 26 | a1i | ⊢ ( 𝑘  ∈  V  →  ⦋ 𝑘  /  𝑖 ⦌ ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 28 | 25 27 | oveq12d | ⊢ ( 𝑘  ∈  V  →  ( ⦋ 𝑘  /  𝑖 ⦌ ( 𝑖  ↑  𝑋 )  ·  ⦋ 𝑘  /  𝑖 ⦌ ( 𝐺 ‘ 𝑖 ) )  =  ( ( 𝑘  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 29 | 21 28 | eqtrd | ⊢ ( 𝑘  ∈  V  →  ⦋ 𝑘  /  𝑖 ⦌ ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =  ( ( 𝑘  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 30 | 20 29 | mp1i | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  ⦋ 𝑘  /  𝑖 ⦌ ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =  ( ( 𝑘  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 31 |  | simplll | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 ) ) | 
						
							| 32 |  | simpllr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 33 | 16 | adantr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑠  ∈  ℕ0 ) | 
						
							| 34 | 33 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑠  ∈  ℕ0 ) | 
						
							| 35 | 34 | nn0zd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑠  ∈  ℤ ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  𝑠  ∈  ℤ ) | 
						
							| 37 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 38 | 37 | a1i | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  2  ∈  ℤ ) | 
						
							| 39 | 36 38 | zaddcld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  ( 𝑠  +  2 )  ∈  ℤ ) | 
						
							| 40 |  | simplr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 41 | 40 | nn0zd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  𝑘  ∈  ℤ ) | 
						
							| 42 | 19 | nn0zd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑠  +  1 )  ∈  ℤ ) | 
						
							| 43 |  | nn0z | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℤ ) | 
						
							| 44 |  | zltp1le | ⊢ ( ( ( 𝑠  +  1 )  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑠  +  1 )  <  𝑘  ↔  ( ( 𝑠  +  1 )  +  1 )  ≤  𝑘 ) ) | 
						
							| 45 | 42 43 44 | syl2an | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑠  +  1 )  <  𝑘  ↔  ( ( 𝑠  +  1 )  +  1 )  ≤  𝑘 ) ) | 
						
							| 46 | 45 | biimpa | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  ( ( 𝑠  +  1 )  +  1 )  ≤  𝑘 ) | 
						
							| 47 |  | nncn | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℂ ) | 
						
							| 48 |  | add1p1 | ⊢ ( 𝑠  ∈  ℂ  →  ( ( 𝑠  +  1 )  +  1 )  =  ( 𝑠  +  2 ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝑠  ∈  ℕ  →  ( ( 𝑠  +  1 )  +  1 )  =  ( 𝑠  +  2 ) ) | 
						
							| 50 | 49 | breq1d | ⊢ ( 𝑠  ∈  ℕ  →  ( ( ( 𝑠  +  1 )  +  1 )  ≤  𝑘  ↔  ( 𝑠  +  2 )  ≤  𝑘 ) ) | 
						
							| 51 | 50 | bicomd | ⊢ ( 𝑠  ∈  ℕ  →  ( ( 𝑠  +  2 )  ≤  𝑘  ↔  ( ( 𝑠  +  1 )  +  1 )  ≤  𝑘 ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( 𝑠  +  2 )  ≤  𝑘  ↔  ( ( 𝑠  +  1 )  +  1 )  ≤  𝑘 ) ) | 
						
							| 53 | 52 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑠  +  2 )  ≤  𝑘  ↔  ( ( 𝑠  +  1 )  +  1 )  ≤  𝑘 ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  ( ( 𝑠  +  2 )  ≤  𝑘  ↔  ( ( 𝑠  +  1 )  +  1 )  ≤  𝑘 ) ) | 
						
							| 55 | 46 54 | mpbird | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  ( 𝑠  +  2 )  ≤  𝑘 ) | 
						
							| 56 |  | eluz2 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) )  ↔  ( ( 𝑠  +  2 )  ∈  ℤ  ∧  𝑘  ∈  ℤ  ∧  ( 𝑠  +  2 )  ≤  𝑘 ) ) | 
						
							| 57 | 39 41 55 56 | syl3anbrc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  𝑘  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) ) ) | 
						
							| 58 | 1 2 3 4 5 6 7 8 9 10 11 12 | chfacfscmul0 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) ) )  →  ( ( 𝑘  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑘 ) )  =   0  ) | 
						
							| 59 | 31 32 57 58 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  ( ( 𝑘  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑘 ) )  =   0  ) | 
						
							| 60 | 30 59 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝑘 )  →  ⦋ 𝑘  /  𝑖 ⦌ ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =   0  ) | 
						
							| 61 | 60 | ex | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑠  +  1 )  <  𝑘  →  ⦋ 𝑘  /  𝑖 ⦌ ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =   0  ) ) | 
						
							| 62 | 61 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ∀ 𝑘  ∈  ℕ0 ( ( 𝑠  +  1 )  <  𝑘  →  ⦋ 𝑘  /  𝑖 ⦌ ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =   0  ) ) | 
						
							| 63 |  | breq1 | ⊢ ( 𝑧  =  ( 𝑠  +  1 )  →  ( 𝑧  <  𝑘  ↔  ( 𝑠  +  1 )  <  𝑘 ) ) | 
						
							| 64 | 63 | rspceaimv | ⊢ ( ( ( 𝑠  +  1 )  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ℕ0 ( ( 𝑠  +  1 )  <  𝑘  →  ⦋ 𝑘  /  𝑖 ⦌ ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =   0  ) )  →  ∃ 𝑧  ∈  ℕ0 ∀ 𝑘  ∈  ℕ0 ( 𝑧  <  𝑘  →  ⦋ 𝑘  /  𝑖 ⦌ ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =   0  ) ) | 
						
							| 65 | 19 62 64 | syl2anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ∃ 𝑧  ∈  ℕ0 ∀ 𝑘  ∈  ℕ0 ( 𝑧  <  𝑘  →  ⦋ 𝑘  /  𝑖 ⦌ ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) )  =   0  ) ) | 
						
							| 66 | 14 15 65 | mptnn0fsupp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝑖 ) ) )  finSupp   0  ) |