Metamath Proof Explorer


Theorem chfacfscmulfsupp

Description: A mapping of scaled values of the "characteristic factor function" is finitely supported. (Contributed by AV, 8-Nov-2019)

Ref Expression
Hypotheses chfacfisf.a A = N Mat R
chfacfisf.b B = Base A
chfacfisf.p P = Poly 1 R
chfacfisf.y Y = N Mat P
chfacfisf.r × ˙ = Y
chfacfisf.s - ˙ = - Y
chfacfisf.0 0 ˙ = 0 Y
chfacfisf.t T = N matToPolyMat R
chfacfisf.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
chfacfscmulcl.x X = var 1 R
chfacfscmulcl.m · ˙ = Y
chfacfscmulcl.e × ˙ = mulGrp P
Assertion chfacfscmulfsupp N Fin R CRing M B s b B 0 s finSupp 0 ˙ i 0 i × ˙ X · ˙ G i

Proof

Step Hyp Ref Expression
1 chfacfisf.a A = N Mat R
2 chfacfisf.b B = Base A
3 chfacfisf.p P = Poly 1 R
4 chfacfisf.y Y = N Mat P
5 chfacfisf.r × ˙ = Y
6 chfacfisf.s - ˙ = - Y
7 chfacfisf.0 0 ˙ = 0 Y
8 chfacfisf.t T = N matToPolyMat R
9 chfacfisf.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 chfacfscmulcl.x X = var 1 R
11 chfacfscmulcl.m · ˙ = Y
12 chfacfscmulcl.e × ˙ = mulGrp P
13 7 fvexi 0 ˙ V
14 13 a1i N Fin R CRing M B s b B 0 s 0 ˙ V
15 ovexd N Fin R CRing M B s b B 0 s i 0 i × ˙ X · ˙ G i V
16 nnnn0 s s 0
17 peano2nn0 s 0 s + 1 0
18 16 17 syl s s + 1 0
19 18 ad2antrl N Fin R CRing M B s b B 0 s s + 1 0
20 vex k V
21 csbov12g k V k / i i × ˙ X · ˙ G i = k / i i × ˙ X · ˙ k / i G i
22 csbov1g k V k / i i × ˙ X = k / i i × ˙ X
23 csbvarg k V k / i i = k
24 23 oveq1d k V k / i i × ˙ X = k × ˙ X
25 22 24 eqtrd k V k / i i × ˙ X = k × ˙ X
26 csbfv k / i G i = G k
27 26 a1i k V k / i G i = G k
28 25 27 oveq12d k V k / i i × ˙ X · ˙ k / i G i = k × ˙ X · ˙ G k
29 21 28 eqtrd k V k / i i × ˙ X · ˙ G i = k × ˙ X · ˙ G k
30 20 29 mp1i N Fin R CRing M B s b B 0 s k 0 s + 1 < k k / i i × ˙ X · ˙ G i = k × ˙ X · ˙ G k
31 simplll N Fin R CRing M B s b B 0 s k 0 s + 1 < k N Fin R CRing M B
32 simpllr N Fin R CRing M B s b B 0 s k 0 s + 1 < k s b B 0 s
33 16 adantr s b B 0 s s 0
34 33 ad2antlr N Fin R CRing M B s b B 0 s k 0 s 0
35 34 nn0zd N Fin R CRing M B s b B 0 s k 0 s
36 35 adantr N Fin R CRing M B s b B 0 s k 0 s + 1 < k s
37 2z 2
38 37 a1i N Fin R CRing M B s b B 0 s k 0 s + 1 < k 2
39 36 38 zaddcld N Fin R CRing M B s b B 0 s k 0 s + 1 < k s + 2
40 simplr N Fin R CRing M B s b B 0 s k 0 s + 1 < k k 0
41 40 nn0zd N Fin R CRing M B s b B 0 s k 0 s + 1 < k k
42 19 nn0zd N Fin R CRing M B s b B 0 s s + 1
43 nn0z k 0 k
44 zltp1le s + 1 k s + 1 < k s + 1 + 1 k
45 42 43 44 syl2an N Fin R CRing M B s b B 0 s k 0 s + 1 < k s + 1 + 1 k
46 45 biimpa N Fin R CRing M B s b B 0 s k 0 s + 1 < k s + 1 + 1 k
47 nncn s s
48 add1p1 s s + 1 + 1 = s + 2
49 47 48 syl s s + 1 + 1 = s + 2
50 49 breq1d s s + 1 + 1 k s + 2 k
51 50 bicomd s s + 2 k s + 1 + 1 k
52 51 adantr s b B 0 s s + 2 k s + 1 + 1 k
53 52 ad2antlr N Fin R CRing M B s b B 0 s k 0 s + 2 k s + 1 + 1 k
54 53 adantr N Fin R CRing M B s b B 0 s k 0 s + 1 < k s + 2 k s + 1 + 1 k
55 46 54 mpbird N Fin R CRing M B s b B 0 s k 0 s + 1 < k s + 2 k
56 eluz2 k s + 2 s + 2 k s + 2 k
57 39 41 55 56 syl3anbrc N Fin R CRing M B s b B 0 s k 0 s + 1 < k k s + 2
58 1 2 3 4 5 6 7 8 9 10 11 12 chfacfscmul0 N Fin R CRing M B s b B 0 s k s + 2 k × ˙ X · ˙ G k = 0 ˙
59 31 32 57 58 syl3anc N Fin R CRing M B s b B 0 s k 0 s + 1 < k k × ˙ X · ˙ G k = 0 ˙
60 30 59 eqtrd N Fin R CRing M B s b B 0 s k 0 s + 1 < k k / i i × ˙ X · ˙ G i = 0 ˙
61 60 ex N Fin R CRing M B s b B 0 s k 0 s + 1 < k k / i i × ˙ X · ˙ G i = 0 ˙
62 61 ralrimiva N Fin R CRing M B s b B 0 s k 0 s + 1 < k k / i i × ˙ X · ˙ G i = 0 ˙
63 breq1 z = s + 1 z < k s + 1 < k
64 63 rspceaimv s + 1 0 k 0 s + 1 < k k / i i × ˙ X · ˙ G i = 0 ˙ z 0 k 0 z < k k / i i × ˙ X · ˙ G i = 0 ˙
65 19 62 64 syl2anc N Fin R CRing M B s b B 0 s z 0 k 0 z < k k / i i × ˙ X · ˙ G i = 0 ˙
66 14 15 65 mptnn0fsupp N Fin R CRing M B s b B 0 s finSupp 0 ˙ i 0 i × ˙ X · ˙ G i