Metamath Proof Explorer


Theorem chfacfscmul0

Description: A scaled value of the "characteristic factor function" is zero almost always. (Contributed by AV, 9-Nov-2019)

Ref Expression
Hypotheses chfacfisf.a A = N Mat R
chfacfisf.b B = Base A
chfacfisf.p P = Poly 1 R
chfacfisf.y Y = N Mat P
chfacfisf.r × ˙ = Y
chfacfisf.s - ˙ = - Y
chfacfisf.0 0 ˙ = 0 Y
chfacfisf.t T = N matToPolyMat R
chfacfisf.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
chfacfscmulcl.x X = var 1 R
chfacfscmulcl.m · ˙ = Y
chfacfscmulcl.e × ˙ = mulGrp P
Assertion chfacfscmul0 N Fin R CRing M B s b B 0 s K s + 2 K × ˙ X · ˙ G K = 0 ˙

Proof

Step Hyp Ref Expression
1 chfacfisf.a A = N Mat R
2 chfacfisf.b B = Base A
3 chfacfisf.p P = Poly 1 R
4 chfacfisf.y Y = N Mat P
5 chfacfisf.r × ˙ = Y
6 chfacfisf.s - ˙ = - Y
7 chfacfisf.0 0 ˙ = 0 Y
8 chfacfisf.t T = N matToPolyMat R
9 chfacfisf.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 chfacfscmulcl.x X = var 1 R
11 chfacfscmulcl.m · ˙ = Y
12 chfacfscmulcl.e × ˙ = mulGrp P
13 eluz2 K s + 2 s + 2 K s + 2 K
14 simpll K s s + 2 K K
15 nngt0 s 0 < s
16 nnre s s
17 16 adantl K s s
18 2rp 2 +
19 18 a1i K s 2 +
20 17 19 ltaddrpd K s s < s + 2
21 0red K s 0
22 2re 2
23 22 a1i K s 2
24 17 23 readdcld K s s + 2
25 lttr 0 s s + 2 0 < s s < s + 2 0 < s + 2
26 21 17 24 25 syl3anc K s 0 < s s < s + 2 0 < s + 2
27 20 26 mpan2d K s 0 < s 0 < s + 2
28 27 ex K s 0 < s 0 < s + 2
29 28 com13 0 < s s K 0 < s + 2
30 15 29 mpcom s K 0 < s + 2
31 30 impcom K s 0 < s + 2
32 zre K K
33 32 adantr K s K
34 ltleletr 0 s + 2 K 0 < s + 2 s + 2 K 0 K
35 21 24 33 34 syl3anc K s 0 < s + 2 s + 2 K 0 K
36 31 35 mpand K s s + 2 K 0 K
37 36 imp K s s + 2 K 0 K
38 elnn0z K 0 K 0 K
39 14 37 38 sylanbrc K s s + 2 K K 0
40 nncn s s
41 add1p1 s s + 1 + 1 = s + 2
42 40 41 syl s s + 1 + 1 = s + 2
43 42 adantl K s s + 1 + 1 = s + 2
44 43 eqcomd K s s + 2 = s + 1 + 1
45 44 breq1d K s s + 2 K s + 1 + 1 K
46 nnz s s
47 46 peano2zd s s + 1
48 47 anim2i K s K s + 1
49 48 ancomd K s s + 1 K
50 zltp1le s + 1 K s + 1 < K s + 1 + 1 K
51 50 bicomd s + 1 K s + 1 + 1 K s + 1 < K
52 49 51 syl K s s + 1 + 1 K s + 1 < K
53 45 52 bitrd K s s + 2 K s + 1 < K
54 53 biimpa K s s + 2 K s + 1 < K
55 39 54 jca K s s + 2 K K 0 s + 1 < K
56 55 ex K s s + 2 K K 0 s + 1 < K
57 56 impancom K s + 2 K s K 0 s + 1 < K
58 57 3adant1 s + 2 K s + 2 K s K 0 s + 1 < K
59 58 com12 s s + 2 K s + 2 K K 0 s + 1 < K
60 13 59 syl5bi s K s + 2 K 0 s + 1 < K
61 60 adantr s b B 0 s K s + 2 K 0 s + 1 < K
62 61 adantl N Fin R CRing M B s b B 0 s K s + 2 K 0 s + 1 < K
63 0red N Fin R CRing M B s b B 0 s K 0 s + 1 < K 0
64 peano2re s s + 1
65 16 64 syl s s + 1
66 65 adantr s b B 0 s s + 1
67 66 adantl N Fin R CRing M B s b B 0 s s + 1
68 67 ad2antrr N Fin R CRing M B s b B 0 s K 0 s + 1 < K s + 1
69 nn0re K 0 K
70 69 ad2antlr N Fin R CRing M B s b B 0 s K 0 s + 1 < K K
71 nnnn0 s s 0
72 71 adantr s b B 0 s s 0
73 72 ad2antlr N Fin R CRing M B s b B 0 s K 0 s 0
74 nn0p1gt0 s 0 0 < s + 1
75 73 74 syl N Fin R CRing M B s b B 0 s K 0 0 < s + 1
76 75 adantr N Fin R CRing M B s b B 0 s K 0 s + 1 < K 0 < s + 1
77 simpr N Fin R CRing M B s b B 0 s K 0 s + 1 < K s + 1 < K
78 63 68 70 76 77 lttrd N Fin R CRing M B s b B 0 s K 0 s + 1 < K 0 < K
79 78 gt0ne0d N Fin R CRing M B s b B 0 s K 0 s + 1 < K K 0
80 79 neneqd N Fin R CRing M B s b B 0 s K 0 s + 1 < K ¬ K = 0
81 80 adantr N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K ¬ K = 0
82 eqeq1 n = K n = 0 K = 0
83 82 notbid n = K ¬ n = 0 ¬ K = 0
84 83 adantl N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K ¬ n = 0 ¬ K = 0
85 81 84 mpbird N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K ¬ n = 0
86 85 iffalsed N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
87 66 ad2antlr N Fin R CRing M B s b B 0 s K 0 s + 1
88 ltne s + 1 s + 1 < K K s + 1
89 87 88 sylan N Fin R CRing M B s b B 0 s K 0 s + 1 < K K s + 1
90 89 neneqd N Fin R CRing M B s b B 0 s K 0 s + 1 < K ¬ K = s + 1
91 90 adantr N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K ¬ K = s + 1
92 eqeq1 n = K n = s + 1 K = s + 1
93 92 notbid n = K ¬ n = s + 1 ¬ K = s + 1
94 93 adantl N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K ¬ n = s + 1 ¬ K = s + 1
95 91 94 mpbird N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K ¬ n = s + 1
96 95 iffalsed N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
97 simplr N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K s + 1 < K
98 breq2 n = K s + 1 < n s + 1 < K
99 98 adantl N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K s + 1 < n s + 1 < K
100 97 99 mpbird N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K s + 1 < n
101 100 iftrued N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 ˙
102 86 96 101 3eqtrd N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 ˙
103 simplr N Fin R CRing M B s b B 0 s K 0 s + 1 < K K 0
104 7 fvexi 0 ˙ V
105 104 a1i N Fin R CRing M B s b B 0 s K 0 s + 1 < K 0 ˙ V
106 9 102 103 105 fvmptd2 N Fin R CRing M B s b B 0 s K 0 s + 1 < K G K = 0 ˙
107 106 oveq2d N Fin R CRing M B s b B 0 s K 0 s + 1 < K K × ˙ X · ˙ G K = K × ˙ X · ˙ 0 ˙
108 crngring R CRing R Ring
109 3 4 pmatlmod N Fin R Ring Y LMod
110 108 109 sylan2 N Fin R CRing Y LMod
111 110 3adant3 N Fin R CRing M B Y LMod
112 111 ad2antrr N Fin R CRing M B s b B 0 s K 0 Y LMod
113 3 ply1ring R Ring P Ring
114 108 113 syl R CRing P Ring
115 114 3ad2ant2 N Fin R CRing M B P Ring
116 eqid mulGrp P = mulGrp P
117 116 ringmgp P Ring mulGrp P Mnd
118 115 117 syl N Fin R CRing M B mulGrp P Mnd
119 118 ad2antrr N Fin R CRing M B s b B 0 s K 0 mulGrp P Mnd
120 simpr N Fin R CRing M B s b B 0 s K 0 K 0
121 108 3ad2ant2 N Fin R CRing M B R Ring
122 eqid Base P = Base P
123 10 3 122 vr1cl R Ring X Base P
124 121 123 syl N Fin R CRing M B X Base P
125 124 ad2antrr N Fin R CRing M B s b B 0 s K 0 X Base P
126 116 122 mgpbas Base P = Base mulGrp P
127 126 12 mulgnn0cl mulGrp P Mnd K 0 X Base P K × ˙ X Base P
128 119 120 125 127 syl3anc N Fin R CRing M B s b B 0 s K 0 K × ˙ X Base P
129 3 ply1crng R CRing P CRing
130 129 anim2i N Fin R CRing N Fin P CRing
131 130 3adant3 N Fin R CRing M B N Fin P CRing
132 4 matsca2 N Fin P CRing P = Scalar Y
133 131 132 syl N Fin R CRing M B P = Scalar Y
134 133 eqcomd N Fin R CRing M B Scalar Y = P
135 134 fveq2d N Fin R CRing M B Base Scalar Y = Base P
136 135 eleq2d N Fin R CRing M B K × ˙ X Base Scalar Y K × ˙ X Base P
137 136 ad2antrr N Fin R CRing M B s b B 0 s K 0 K × ˙ X Base Scalar Y K × ˙ X Base P
138 128 137 mpbird N Fin R CRing M B s b B 0 s K 0 K × ˙ X Base Scalar Y
139 112 138 jca N Fin R CRing M B s b B 0 s K 0 Y LMod K × ˙ X Base Scalar Y
140 139 adantr N Fin R CRing M B s b B 0 s K 0 s + 1 < K Y LMod K × ˙ X Base Scalar Y
141 eqid Scalar Y = Scalar Y
142 eqid Base Scalar Y = Base Scalar Y
143 141 11 142 7 lmodvs0 Y LMod K × ˙ X Base Scalar Y K × ˙ X · ˙ 0 ˙ = 0 ˙
144 140 143 syl N Fin R CRing M B s b B 0 s K 0 s + 1 < K K × ˙ X · ˙ 0 ˙ = 0 ˙
145 107 144 eqtrd N Fin R CRing M B s b B 0 s K 0 s + 1 < K K × ˙ X · ˙ G K = 0 ˙
146 145 expl N Fin R CRing M B s b B 0 s K 0 s + 1 < K K × ˙ X · ˙ G K = 0 ˙
147 62 146 syld N Fin R CRing M B s b B 0 s K s + 2 K × ˙ X · ˙ G K = 0 ˙
148 147 3impia N Fin R CRing M B s b B 0 s K s + 2 K × ˙ X · ˙ G K = 0 ˙