| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chfacfisf.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | chfacfisf.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | chfacfisf.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | chfacfisf.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | chfacfisf.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 6 |  | chfacfisf.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 7 |  | chfacfisf.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 8 |  | chfacfisf.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 9 |  | chfacfisf.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 10 |  | chfacfscmulcl.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 11 |  | chfacfscmulcl.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 12 |  | chfacfscmulcl.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 13 |  | eluz2 | ⊢ ( 𝐾  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) )  ↔  ( ( 𝑠  +  2 )  ∈  ℤ  ∧  𝐾  ∈  ℤ  ∧  ( 𝑠  +  2 )  ≤  𝐾 ) ) | 
						
							| 14 |  | simpll | ⊢ ( ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  ∧  ( 𝑠  +  2 )  ≤  𝐾 )  →  𝐾  ∈  ℤ ) | 
						
							| 15 |  | nngt0 | ⊢ ( 𝑠  ∈  ℕ  →  0  <  𝑠 ) | 
						
							| 16 |  | nnre | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℝ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  𝑠  ∈  ℝ ) | 
						
							| 18 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 19 | 18 | a1i | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  2  ∈  ℝ+ ) | 
						
							| 20 | 17 19 | ltaddrpd | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  𝑠  <  ( 𝑠  +  2 ) ) | 
						
							| 21 |  | 0red | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  0  ∈  ℝ ) | 
						
							| 22 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  2  ∈  ℝ ) | 
						
							| 24 | 17 23 | readdcld | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  ( 𝑠  +  2 )  ∈  ℝ ) | 
						
							| 25 |  | lttr | ⊢ ( ( 0  ∈  ℝ  ∧  𝑠  ∈  ℝ  ∧  ( 𝑠  +  2 )  ∈  ℝ )  →  ( ( 0  <  𝑠  ∧  𝑠  <  ( 𝑠  +  2 ) )  →  0  <  ( 𝑠  +  2 ) ) ) | 
						
							| 26 | 21 17 24 25 | syl3anc | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  ( ( 0  <  𝑠  ∧  𝑠  <  ( 𝑠  +  2 ) )  →  0  <  ( 𝑠  +  2 ) ) ) | 
						
							| 27 | 20 26 | mpan2d | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  ( 0  <  𝑠  →  0  <  ( 𝑠  +  2 ) ) ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝐾  ∈  ℤ  →  ( 𝑠  ∈  ℕ  →  ( 0  <  𝑠  →  0  <  ( 𝑠  +  2 ) ) ) ) | 
						
							| 29 | 28 | com13 | ⊢ ( 0  <  𝑠  →  ( 𝑠  ∈  ℕ  →  ( 𝐾  ∈  ℤ  →  0  <  ( 𝑠  +  2 ) ) ) ) | 
						
							| 30 | 15 29 | mpcom | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝐾  ∈  ℤ  →  0  <  ( 𝑠  +  2 ) ) ) | 
						
							| 31 | 30 | impcom | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  0  <  ( 𝑠  +  2 ) ) | 
						
							| 32 |  | zre | ⊢ ( 𝐾  ∈  ℤ  →  𝐾  ∈  ℝ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  𝐾  ∈  ℝ ) | 
						
							| 34 |  | ltleletr | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝑠  +  2 )  ∈  ℝ  ∧  𝐾  ∈  ℝ )  →  ( ( 0  <  ( 𝑠  +  2 )  ∧  ( 𝑠  +  2 )  ≤  𝐾 )  →  0  ≤  𝐾 ) ) | 
						
							| 35 | 21 24 33 34 | syl3anc | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  ( ( 0  <  ( 𝑠  +  2 )  ∧  ( 𝑠  +  2 )  ≤  𝐾 )  →  0  ≤  𝐾 ) ) | 
						
							| 36 | 31 35 | mpand | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  ( ( 𝑠  +  2 )  ≤  𝐾  →  0  ≤  𝐾 ) ) | 
						
							| 37 | 36 | imp | ⊢ ( ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  ∧  ( 𝑠  +  2 )  ≤  𝐾 )  →  0  ≤  𝐾 ) | 
						
							| 38 |  | elnn0z | ⊢ ( 𝐾  ∈  ℕ0  ↔  ( 𝐾  ∈  ℤ  ∧  0  ≤  𝐾 ) ) | 
						
							| 39 | 14 37 38 | sylanbrc | ⊢ ( ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  ∧  ( 𝑠  +  2 )  ≤  𝐾 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 40 |  | nncn | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℂ ) | 
						
							| 41 |  | add1p1 | ⊢ ( 𝑠  ∈  ℂ  →  ( ( 𝑠  +  1 )  +  1 )  =  ( 𝑠  +  2 ) ) | 
						
							| 42 | 40 41 | syl | ⊢ ( 𝑠  ∈  ℕ  →  ( ( 𝑠  +  1 )  +  1 )  =  ( 𝑠  +  2 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  ( ( 𝑠  +  1 )  +  1 )  =  ( 𝑠  +  2 ) ) | 
						
							| 44 | 43 | eqcomd | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  ( 𝑠  +  2 )  =  ( ( 𝑠  +  1 )  +  1 ) ) | 
						
							| 45 | 44 | breq1d | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  ( ( 𝑠  +  2 )  ≤  𝐾  ↔  ( ( 𝑠  +  1 )  +  1 )  ≤  𝐾 ) ) | 
						
							| 46 |  | nnz | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℤ ) | 
						
							| 47 | 46 | peano2zd | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑠  +  1 )  ∈  ℤ ) | 
						
							| 48 | 47 | anim2i | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  ( 𝐾  ∈  ℤ  ∧  ( 𝑠  +  1 )  ∈  ℤ ) ) | 
						
							| 49 | 48 | ancomd | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  ( ( 𝑠  +  1 )  ∈  ℤ  ∧  𝐾  ∈  ℤ ) ) | 
						
							| 50 |  | zltp1le | ⊢ ( ( ( 𝑠  +  1 )  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( ( 𝑠  +  1 )  <  𝐾  ↔  ( ( 𝑠  +  1 )  +  1 )  ≤  𝐾 ) ) | 
						
							| 51 | 50 | bicomd | ⊢ ( ( ( 𝑠  +  1 )  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( ( ( 𝑠  +  1 )  +  1 )  ≤  𝐾  ↔  ( 𝑠  +  1 )  <  𝐾 ) ) | 
						
							| 52 | 49 51 | syl | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  ( ( ( 𝑠  +  1 )  +  1 )  ≤  𝐾  ↔  ( 𝑠  +  1 )  <  𝐾 ) ) | 
						
							| 53 | 45 52 | bitrd | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  ( ( 𝑠  +  2 )  ≤  𝐾  ↔  ( 𝑠  +  1 )  <  𝐾 ) ) | 
						
							| 54 | 53 | biimpa | ⊢ ( ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  ∧  ( 𝑠  +  2 )  ≤  𝐾 )  →  ( 𝑠  +  1 )  <  𝐾 ) | 
						
							| 55 | 39 54 | jca | ⊢ ( ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  ∧  ( 𝑠  +  2 )  ≤  𝐾 )  →  ( 𝐾  ∈  ℕ0  ∧  ( 𝑠  +  1 )  <  𝐾 ) ) | 
						
							| 56 | 55 | ex | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑠  ∈  ℕ )  →  ( ( 𝑠  +  2 )  ≤  𝐾  →  ( 𝐾  ∈  ℕ0  ∧  ( 𝑠  +  1 )  <  𝐾 ) ) ) | 
						
							| 57 | 56 | impancom | ⊢ ( ( 𝐾  ∈  ℤ  ∧  ( 𝑠  +  2 )  ≤  𝐾 )  →  ( 𝑠  ∈  ℕ  →  ( 𝐾  ∈  ℕ0  ∧  ( 𝑠  +  1 )  <  𝐾 ) ) ) | 
						
							| 58 | 57 | 3adant1 | ⊢ ( ( ( 𝑠  +  2 )  ∈  ℤ  ∧  𝐾  ∈  ℤ  ∧  ( 𝑠  +  2 )  ≤  𝐾 )  →  ( 𝑠  ∈  ℕ  →  ( 𝐾  ∈  ℕ0  ∧  ( 𝑠  +  1 )  <  𝐾 ) ) ) | 
						
							| 59 | 58 | com12 | ⊢ ( 𝑠  ∈  ℕ  →  ( ( ( 𝑠  +  2 )  ∈  ℤ  ∧  𝐾  ∈  ℤ  ∧  ( 𝑠  +  2 )  ≤  𝐾 )  →  ( 𝐾  ∈  ℕ0  ∧  ( 𝑠  +  1 )  <  𝐾 ) ) ) | 
						
							| 60 | 13 59 | biimtrid | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝐾  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) )  →  ( 𝐾  ∈  ℕ0  ∧  ( 𝑠  +  1 )  <  𝐾 ) ) ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝐾  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) )  →  ( 𝐾  ∈  ℕ0  ∧  ( 𝑠  +  1 )  <  𝐾 ) ) ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝐾  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) )  →  ( 𝐾  ∈  ℕ0  ∧  ( 𝑠  +  1 )  <  𝐾 ) ) ) | 
						
							| 63 |  | 0red | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  0  ∈  ℝ ) | 
						
							| 64 |  | peano2re | ⊢ ( 𝑠  ∈  ℝ  →  ( 𝑠  +  1 )  ∈  ℝ ) | 
						
							| 65 | 16 64 | syl | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑠  +  1 )  ∈  ℝ ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑠  +  1 )  ∈  ℝ ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑠  +  1 )  ∈  ℝ ) | 
						
							| 68 | 67 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  ( 𝑠  +  1 )  ∈  ℝ ) | 
						
							| 69 |  | nn0re | ⊢ ( 𝐾  ∈  ℕ0  →  𝐾  ∈  ℝ ) | 
						
							| 70 | 69 | ad2antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  𝐾  ∈  ℝ ) | 
						
							| 71 |  | nnnn0 | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℕ0 ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑠  ∈  ℕ0 ) | 
						
							| 73 | 72 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  →  𝑠  ∈  ℕ0 ) | 
						
							| 74 |  | nn0p1gt0 | ⊢ ( 𝑠  ∈  ℕ0  →  0  <  ( 𝑠  +  1 ) ) | 
						
							| 75 | 73 74 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  →  0  <  ( 𝑠  +  1 ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  0  <  ( 𝑠  +  1 ) ) | 
						
							| 77 |  | simpr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  ( 𝑠  +  1 )  <  𝐾 ) | 
						
							| 78 | 63 68 70 76 77 | lttrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  0  <  𝐾 ) | 
						
							| 79 | 78 | gt0ne0d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  𝐾  ≠  0 ) | 
						
							| 80 | 79 | neneqd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  ¬  𝐾  =  0 ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  ∧  𝑛  =  𝐾 )  →  ¬  𝐾  =  0 ) | 
						
							| 82 |  | eqeq1 | ⊢ ( 𝑛  =  𝐾  →  ( 𝑛  =  0  ↔  𝐾  =  0 ) ) | 
						
							| 83 | 82 | notbid | ⊢ ( 𝑛  =  𝐾  →  ( ¬  𝑛  =  0  ↔  ¬  𝐾  =  0 ) ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  ∧  𝑛  =  𝐾 )  →  ( ¬  𝑛  =  0  ↔  ¬  𝐾  =  0 ) ) | 
						
							| 85 | 81 84 | mpbird | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  ∧  𝑛  =  𝐾 )  →  ¬  𝑛  =  0 ) | 
						
							| 86 | 85 | iffalsed | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  ∧  𝑛  =  𝐾 )  →  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  =  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 87 | 66 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑠  +  1 )  ∈  ℝ ) | 
						
							| 88 |  | ltne | ⊢ ( ( ( 𝑠  +  1 )  ∈  ℝ  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  𝐾  ≠  ( 𝑠  +  1 ) ) | 
						
							| 89 | 87 88 | sylan | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  𝐾  ≠  ( 𝑠  +  1 ) ) | 
						
							| 90 | 89 | neneqd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  ¬  𝐾  =  ( 𝑠  +  1 ) ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  ∧  𝑛  =  𝐾 )  →  ¬  𝐾  =  ( 𝑠  +  1 ) ) | 
						
							| 92 |  | eqeq1 | ⊢ ( 𝑛  =  𝐾  →  ( 𝑛  =  ( 𝑠  +  1 )  ↔  𝐾  =  ( 𝑠  +  1 ) ) ) | 
						
							| 93 | 92 | notbid | ⊢ ( 𝑛  =  𝐾  →  ( ¬  𝑛  =  ( 𝑠  +  1 )  ↔  ¬  𝐾  =  ( 𝑠  +  1 ) ) ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  ∧  𝑛  =  𝐾 )  →  ( ¬  𝑛  =  ( 𝑠  +  1 )  ↔  ¬  𝐾  =  ( 𝑠  +  1 ) ) ) | 
						
							| 95 | 91 94 | mpbird | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  ∧  𝑛  =  𝐾 )  →  ¬  𝑛  =  ( 𝑠  +  1 ) ) | 
						
							| 96 | 95 | iffalsed | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  ∧  𝑛  =  𝐾 )  →  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 97 |  | simplr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  ∧  𝑛  =  𝐾 )  →  ( 𝑠  +  1 )  <  𝐾 ) | 
						
							| 98 |  | breq2 | ⊢ ( 𝑛  =  𝐾  →  ( ( 𝑠  +  1 )  <  𝑛  ↔  ( 𝑠  +  1 )  <  𝐾 ) ) | 
						
							| 99 | 98 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  ∧  𝑛  =  𝐾 )  →  ( ( 𝑠  +  1 )  <  𝑛  ↔  ( 𝑠  +  1 )  <  𝐾 ) ) | 
						
							| 100 | 97 99 | mpbird | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  ∧  𝑛  =  𝐾 )  →  ( 𝑠  +  1 )  <  𝑛 ) | 
						
							| 101 | 100 | iftrued | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  ∧  𝑛  =  𝐾 )  →  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) )  =   0  ) | 
						
							| 102 | 86 96 101 | 3eqtrd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  ∧  𝑛  =  𝐾 )  →  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  =   0  ) | 
						
							| 103 |  | simplr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 104 | 7 | fvexi | ⊢  0   ∈  V | 
						
							| 105 | 104 | a1i | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →   0   ∈  V ) | 
						
							| 106 | 9 102 103 105 | fvmptd2 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  ( 𝐺 ‘ 𝐾 )  =   0  ) | 
						
							| 107 | 106 | oveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  ( ( 𝐾  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝐾 ) )  =  ( ( 𝐾  ↑  𝑋 )  ·   0  ) ) | 
						
							| 108 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 109 | 3 4 | pmatlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  LMod ) | 
						
							| 110 | 108 109 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  LMod ) | 
						
							| 111 | 110 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  LMod ) | 
						
							| 112 | 111 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  →  𝑌  ∈  LMod ) | 
						
							| 113 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 114 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 115 | 113 114 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 116 | 3 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 117 | 108 116 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  Ring ) | 
						
							| 118 | 117 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  Ring ) | 
						
							| 119 | 113 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 120 | 118 119 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 121 | 120 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 122 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 123 | 108 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 124 | 10 3 114 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 125 | 123 124 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 126 | 125 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 127 | 115 12 121 122 126 | mulgnn0cld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐾  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 128 | 3 | ply1crng | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing ) | 
						
							| 129 | 128 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing ) ) | 
						
							| 130 | 129 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing ) ) | 
						
							| 131 | 4 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝑌 ) ) | 
						
							| 132 | 130 131 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑃  =  ( Scalar ‘ 𝑌 ) ) | 
						
							| 133 | 132 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Scalar ‘ 𝑌 )  =  𝑃 ) | 
						
							| 134 | 133 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Base ‘ ( Scalar ‘ 𝑌 ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 135 | 134 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝐾  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) )  ↔  ( 𝐾  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 136 | 135 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐾  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) )  ↔  ( 𝐾  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 137 | 127 136 | mpbird | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐾  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 138 | 112 137 | jca | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑌  ∈  LMod  ∧  ( 𝐾  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) ) | 
						
							| 139 | 138 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  ( 𝑌  ∈  LMod  ∧  ( 𝐾  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) ) | 
						
							| 140 |  | eqid | ⊢ ( Scalar ‘ 𝑌 )  =  ( Scalar ‘ 𝑌 ) | 
						
							| 141 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) )  =  ( Base ‘ ( Scalar ‘ 𝑌 ) ) | 
						
							| 142 | 140 11 141 7 | lmodvs0 | ⊢ ( ( 𝑌  ∈  LMod  ∧  ( 𝐾  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) )  →  ( ( 𝐾  ↑  𝑋 )  ·   0  )  =   0  ) | 
						
							| 143 | 139 142 | syl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  ( ( 𝐾  ↑  𝑋 )  ·   0  )  =   0  ) | 
						
							| 144 | 107 143 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  ( ( 𝐾  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝐾 ) )  =   0  ) | 
						
							| 145 | 144 | expl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑠  +  1 )  <  𝐾 )  →  ( ( 𝐾  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝐾 ) )  =   0  ) ) | 
						
							| 146 | 62 145 | syld | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝐾  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) )  →  ( ( 𝐾  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝐾 ) )  =   0  ) ) | 
						
							| 147 | 146 | 3impia | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝐾  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) ) )  →  ( ( 𝐾  ↑  𝑋 )  ·  ( 𝐺 ‘ 𝐾 ) )  =   0  ) |