| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cshwrnid |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑁 ∈ ℤ ) → ran ( 𝑊 cyclShift 𝑁 ) = ran 𝑊 ) |
| 2 |
1
|
3adant2 |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ 𝑁 ∈ ℤ ) → ran ( 𝑊 cyclShift 𝑁 ) = ran 𝑊 ) |
| 3 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝐷 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ 𝑁 ∈ ℤ ) → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 5 |
|
simp2 |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ 𝑁 ∈ ℤ ) → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
| 6 |
|
f1eq2 |
⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 : dom 𝑊 –1-1→ 𝐷 ↔ 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐷 ) ) |
| 7 |
6
|
biimpa |
⊢ ( ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐷 ) |
| 8 |
4 5 7
|
syl2anc |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ 𝑁 ∈ ℤ ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐷 ) |
| 9 |
|
simp3 |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 10 |
|
eqid |
⊢ ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift 𝑁 ) |
| 11 |
|
cshf1 |
⊢ ( ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐷 ∧ 𝑁 ∈ ℤ ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift 𝑁 ) ) → ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐷 ) |
| 12 |
10 11
|
mp3an3 |
⊢ ( ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐷 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐷 ) |
| 13 |
8 9 12
|
syl2anc |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐷 ) |
| 14 |
|
f1eq2 |
⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 cyclShift 𝑁 ) : dom 𝑊 –1-1→ 𝐷 ↔ ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐷 ) ) |
| 15 |
14
|
biimpar |
⊢ ( ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐷 ) → ( 𝑊 cyclShift 𝑁 ) : dom 𝑊 –1-1→ 𝐷 ) |
| 16 |
4 13 15
|
syl2anc |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) : dom 𝑊 –1-1→ 𝐷 ) |
| 17 |
|
f1f1orn |
⊢ ( ( 𝑊 cyclShift 𝑁 ) : dom 𝑊 –1-1→ 𝐷 → ( 𝑊 cyclShift 𝑁 ) : dom 𝑊 –1-1-onto→ ran ( 𝑊 cyclShift 𝑁 ) ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) : dom 𝑊 –1-1-onto→ ran ( 𝑊 cyclShift 𝑁 ) ) |
| 19 |
|
f1oeq3 |
⊢ ( ran ( 𝑊 cyclShift 𝑁 ) = ran 𝑊 → ( ( 𝑊 cyclShift 𝑁 ) : dom 𝑊 –1-1-onto→ ran ( 𝑊 cyclShift 𝑁 ) ↔ ( 𝑊 cyclShift 𝑁 ) : dom 𝑊 –1-1-onto→ ran 𝑊 ) ) |
| 20 |
19
|
biimpa |
⊢ ( ( ran ( 𝑊 cyclShift 𝑁 ) = ran 𝑊 ∧ ( 𝑊 cyclShift 𝑁 ) : dom 𝑊 –1-1-onto→ ran ( 𝑊 cyclShift 𝑁 ) ) → ( 𝑊 cyclShift 𝑁 ) : dom 𝑊 –1-1-onto→ ran 𝑊 ) |
| 21 |
2 18 20
|
syl2anc |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) : dom 𝑊 –1-1-onto→ ran 𝑊 ) |