Metamath Proof Explorer


Theorem cshf1o

Description: Condition for the cyclic shift to be a bijection. (Contributed by Thierry Arnoux, 4-Oct-2023)

Ref Expression
Assertion cshf1o W Word D W : dom W 1-1 D N W cyclShift N : dom W 1-1 onto ran W

Proof

Step Hyp Ref Expression
1 cshwrnid W Word D N ran W cyclShift N = ran W
2 1 3adant2 W Word D W : dom W 1-1 D N ran W cyclShift N = ran W
3 wrddm W Word D dom W = 0 ..^ W
4 3 3ad2ant1 W Word D W : dom W 1-1 D N dom W = 0 ..^ W
5 simp2 W Word D W : dom W 1-1 D N W : dom W 1-1 D
6 f1eq2 dom W = 0 ..^ W W : dom W 1-1 D W : 0 ..^ W 1-1 D
7 6 biimpa dom W = 0 ..^ W W : dom W 1-1 D W : 0 ..^ W 1-1 D
8 4 5 7 syl2anc W Word D W : dom W 1-1 D N W : 0 ..^ W 1-1 D
9 simp3 W Word D W : dom W 1-1 D N N
10 eqid W cyclShift N = W cyclShift N
11 cshf1 W : 0 ..^ W 1-1 D N W cyclShift N = W cyclShift N W cyclShift N : 0 ..^ W 1-1 D
12 10 11 mp3an3 W : 0 ..^ W 1-1 D N W cyclShift N : 0 ..^ W 1-1 D
13 8 9 12 syl2anc W Word D W : dom W 1-1 D N W cyclShift N : 0 ..^ W 1-1 D
14 f1eq2 dom W = 0 ..^ W W cyclShift N : dom W 1-1 D W cyclShift N : 0 ..^ W 1-1 D
15 14 biimpar dom W = 0 ..^ W W cyclShift N : 0 ..^ W 1-1 D W cyclShift N : dom W 1-1 D
16 4 13 15 syl2anc W Word D W : dom W 1-1 D N W cyclShift N : dom W 1-1 D
17 f1f1orn W cyclShift N : dom W 1-1 D W cyclShift N : dom W 1-1 onto ran W cyclShift N
18 16 17 syl W Word D W : dom W 1-1 D N W cyclShift N : dom W 1-1 onto ran W cyclShift N
19 f1oeq3 ran W cyclShift N = ran W W cyclShift N : dom W 1-1 onto ran W cyclShift N W cyclShift N : dom W 1-1 onto ran W
20 19 biimpa ran W cyclShift N = ran W W cyclShift N : dom W 1-1 onto ran W cyclShift N W cyclShift N : dom W 1-1 onto ran W
21 2 18 20 syl2anc W Word D W : dom W 1-1 D N W cyclShift N : dom W 1-1 onto ran W