Description: Condition for the cyclic shift to be a bijection. (Contributed by Thierry Arnoux, 4-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | cshf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cshwrnid | |
|
2 | 1 | 3adant2 | |
3 | wrddm | |
|
4 | 3 | 3ad2ant1 | |
5 | simp2 | |
|
6 | f1eq2 | |
|
7 | 6 | biimpa | |
8 | 4 5 7 | syl2anc | |
9 | simp3 | |
|
10 | eqid | |
|
11 | cshf1 | |
|
12 | 10 11 | mp3an3 | |
13 | 8 9 12 | syl2anc | |
14 | f1eq2 | |
|
15 | 14 | biimpar | |
16 | 4 13 15 | syl2anc | |
17 | f1f1orn | |
|
18 | 16 17 | syl | |
19 | f1oeq3 | |
|
20 | 19 | biimpa | |
21 | 2 18 20 | syl2anc | |