Step |
Hyp |
Ref |
Expression |
1 |
|
cusgrfi.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
cusgrfi.p |
⊢ 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ∃ 𝑎 ∈ 𝑉 ( 𝑎 ≠ 𝑁 ∧ 𝑥 = { 𝑎 , 𝑁 } ) } |
3 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
4 |
1 3
|
cusgredg |
⊢ ( 𝐺 ∈ ComplUSGraph → ( Edg ‘ 𝐺 ) = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
5 |
|
fveq2 |
⊢ ( 𝑥 = { 𝑎 , 𝑁 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑎 , 𝑁 } ) ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( 𝑎 ≠ 𝑁 ∧ 𝑥 = { 𝑎 , 𝑁 } ) ∧ ( 𝑎 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉 ) ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑎 , 𝑁 } ) ) |
7 |
|
hashprg |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → ( 𝑎 ≠ 𝑁 ↔ ( ♯ ‘ { 𝑎 , 𝑁 } ) = 2 ) ) |
8 |
7
|
adantrr |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉 ) ) → ( 𝑎 ≠ 𝑁 ↔ ( ♯ ‘ { 𝑎 , 𝑁 } ) = 2 ) ) |
9 |
8
|
biimpcd |
⊢ ( 𝑎 ≠ 𝑁 → ( ( 𝑎 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉 ) ) → ( ♯ ‘ { 𝑎 , 𝑁 } ) = 2 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝑎 ≠ 𝑁 ∧ 𝑥 = { 𝑎 , 𝑁 } ) → ( ( 𝑎 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉 ) ) → ( ♯ ‘ { 𝑎 , 𝑁 } ) = 2 ) ) |
11 |
10
|
imp |
⊢ ( ( ( 𝑎 ≠ 𝑁 ∧ 𝑥 = { 𝑎 , 𝑁 } ) ∧ ( 𝑎 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉 ) ) ) → ( ♯ ‘ { 𝑎 , 𝑁 } ) = 2 ) |
12 |
6 11
|
eqtrd |
⊢ ( ( ( 𝑎 ≠ 𝑁 ∧ 𝑥 = { 𝑎 , 𝑁 } ) ∧ ( 𝑎 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉 ) ) ) → ( ♯ ‘ 𝑥 ) = 2 ) |
13 |
12
|
an13s |
⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉 ) ∧ ( 𝑎 ∈ 𝑉 ∧ ( 𝑎 ≠ 𝑁 ∧ 𝑥 = { 𝑎 , 𝑁 } ) ) ) → ( ♯ ‘ 𝑥 ) = 2 ) |
14 |
13
|
rexlimdvaa |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉 ) → ( ∃ 𝑎 ∈ 𝑉 ( 𝑎 ≠ 𝑁 ∧ 𝑥 = { 𝑎 , 𝑁 } ) → ( ♯ ‘ 𝑥 ) = 2 ) ) |
15 |
14
|
ss2rabdv |
⊢ ( 𝑁 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝑉 ∣ ∃ 𝑎 ∈ 𝑉 ( 𝑎 ≠ 𝑁 ∧ 𝑥 = { 𝑎 , 𝑁 } ) } ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
16 |
2
|
a1i |
⊢ ( ( Edg ‘ 𝐺 ) = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ∃ 𝑎 ∈ 𝑉 ( 𝑎 ≠ 𝑁 ∧ 𝑥 = { 𝑎 , 𝑁 } ) } ) |
17 |
|
id |
⊢ ( ( Edg ‘ 𝐺 ) = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( Edg ‘ 𝐺 ) = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
18 |
16 17
|
sseq12d |
⊢ ( ( Edg ‘ 𝐺 ) = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( 𝑃 ⊆ ( Edg ‘ 𝐺 ) ↔ { 𝑥 ∈ 𝒫 𝑉 ∣ ∃ 𝑎 ∈ 𝑉 ( 𝑎 ≠ 𝑁 ∧ 𝑥 = { 𝑎 , 𝑁 } ) } ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
19 |
15 18
|
syl5ibr |
⊢ ( ( Edg ‘ 𝐺 ) = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( 𝑁 ∈ 𝑉 → 𝑃 ⊆ ( Edg ‘ 𝐺 ) ) ) |
20 |
4 19
|
syl |
⊢ ( 𝐺 ∈ ComplUSGraph → ( 𝑁 ∈ 𝑉 → 𝑃 ⊆ ( Edg ‘ 𝐺 ) ) ) |
21 |
20
|
imp |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑃 ⊆ ( Edg ‘ 𝐺 ) ) |