Step |
Hyp |
Ref |
Expression |
1 |
|
cusgrfi.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
cusgrfi.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
nfielex |
⊢ ( ¬ 𝑉 ∈ Fin → ∃ 𝑛 𝑛 ∈ 𝑉 ) |
4 |
|
eqeq1 |
⊢ ( 𝑒 = 𝑝 → ( 𝑒 = { 𝑣 , 𝑛 } ↔ 𝑝 = { 𝑣 , 𝑛 } ) ) |
5 |
4
|
anbi2d |
⊢ ( 𝑒 = 𝑝 → ( ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) ↔ ( 𝑣 ≠ 𝑛 ∧ 𝑝 = { 𝑣 , 𝑛 } ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑒 = 𝑝 → ( ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) ↔ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑝 = { 𝑣 , 𝑛 } ) ) ) |
7 |
6
|
cbvrabv |
⊢ { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } = { 𝑝 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑝 = { 𝑣 , 𝑛 } ) } |
8 |
|
eqid |
⊢ ( 𝑝 ∈ ( 𝑉 ∖ { 𝑛 } ) ↦ { 𝑝 , 𝑛 } ) = ( 𝑝 ∈ ( 𝑉 ∖ { 𝑛 } ) ↦ { 𝑝 , 𝑛 } ) |
9 |
1 7 8
|
cusgrfilem3 |
⊢ ( 𝑛 ∈ 𝑉 → ( 𝑉 ∈ Fin ↔ { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ∈ Fin ) ) |
10 |
9
|
notbid |
⊢ ( 𝑛 ∈ 𝑉 → ( ¬ 𝑉 ∈ Fin ↔ ¬ { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ∈ Fin ) ) |
11 |
10
|
biimpac |
⊢ ( ( ¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉 ) → ¬ { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ∈ Fin ) |
12 |
1 7
|
cusgrfilem1 |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑛 ∈ 𝑉 ) → { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ⊆ ( Edg ‘ 𝐺 ) ) |
13 |
2
|
eleq1i |
⊢ ( 𝐸 ∈ Fin ↔ ( Edg ‘ 𝐺 ) ∈ Fin ) |
14 |
|
ssfi |
⊢ ( ( ( Edg ‘ 𝐺 ) ∈ Fin ∧ { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ⊆ ( Edg ‘ 𝐺 ) ) → { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ∈ Fin ) |
15 |
14
|
expcom |
⊢ ( { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ⊆ ( Edg ‘ 𝐺 ) → ( ( Edg ‘ 𝐺 ) ∈ Fin → { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ∈ Fin ) ) |
16 |
13 15
|
syl5bi |
⊢ ( { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ⊆ ( Edg ‘ 𝐺 ) → ( 𝐸 ∈ Fin → { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ∈ Fin ) ) |
17 |
16
|
con3d |
⊢ ( { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ⊆ ( Edg ‘ 𝐺 ) → ( ¬ { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ∈ Fin → ¬ 𝐸 ∈ Fin ) ) |
18 |
12 17
|
syl |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑛 ∈ 𝑉 ) → ( ¬ { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ∈ Fin → ¬ 𝐸 ∈ Fin ) ) |
19 |
18
|
expcom |
⊢ ( 𝑛 ∈ 𝑉 → ( 𝐺 ∈ ComplUSGraph → ( ¬ { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ∈ Fin → ¬ 𝐸 ∈ Fin ) ) ) |
20 |
19
|
com23 |
⊢ ( 𝑛 ∈ 𝑉 → ( ¬ { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ∈ Fin → ( 𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin ) ) ) |
21 |
20
|
adantl |
⊢ ( ( ¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉 ) → ( ¬ { 𝑒 ∈ 𝒫 𝑉 ∣ ∃ 𝑣 ∈ 𝑉 ( 𝑣 ≠ 𝑛 ∧ 𝑒 = { 𝑣 , 𝑛 } ) } ∈ Fin → ( 𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin ) ) ) |
22 |
11 21
|
mpd |
⊢ ( ( ¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉 ) → ( 𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin ) ) |
23 |
3 22
|
exlimddv |
⊢ ( ¬ 𝑉 ∈ Fin → ( 𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin ) ) |
24 |
23
|
com12 |
⊢ ( 𝐺 ∈ ComplUSGraph → ( ¬ 𝑉 ∈ Fin → ¬ 𝐸 ∈ Fin ) ) |
25 |
24
|
con4d |
⊢ ( 𝐺 ∈ ComplUSGraph → ( 𝐸 ∈ Fin → 𝑉 ∈ Fin ) ) |
26 |
25
|
imp |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin ) → 𝑉 ∈ Fin ) |