Metamath Proof Explorer


Theorem cusgrfi

Description: If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018) (Revised by AV, 11-Nov-2020)

Ref Expression
Hypotheses cusgrfi.v V=VtxG
cusgrfi.e E=EdgG
Assertion cusgrfi GComplUSGraphEFinVFin

Proof

Step Hyp Ref Expression
1 cusgrfi.v V=VtxG
2 cusgrfi.e E=EdgG
3 nfielex ¬VFinnnV
4 eqeq1 e=pe=vnp=vn
5 4 anbi2d e=pvne=vnvnp=vn
6 5 rexbidv e=pvVvne=vnvVvnp=vn
7 6 cbvrabv e𝒫V|vVvne=vn=p𝒫V|vVvnp=vn
8 eqid pVnpn=pVnpn
9 1 7 8 cusgrfilem3 nVVFine𝒫V|vVvne=vnFin
10 9 notbid nV¬VFin¬e𝒫V|vVvne=vnFin
11 10 biimpac ¬VFinnV¬e𝒫V|vVvne=vnFin
12 1 7 cusgrfilem1 GComplUSGraphnVe𝒫V|vVvne=vnEdgG
13 2 eleq1i EFinEdgGFin
14 ssfi EdgGFine𝒫V|vVvne=vnEdgGe𝒫V|vVvne=vnFin
15 14 expcom e𝒫V|vVvne=vnEdgGEdgGFine𝒫V|vVvne=vnFin
16 13 15 biimtrid e𝒫V|vVvne=vnEdgGEFine𝒫V|vVvne=vnFin
17 16 con3d e𝒫V|vVvne=vnEdgG¬e𝒫V|vVvne=vnFin¬EFin
18 12 17 syl GComplUSGraphnV¬e𝒫V|vVvne=vnFin¬EFin
19 18 expcom nVGComplUSGraph¬e𝒫V|vVvne=vnFin¬EFin
20 19 com23 nV¬e𝒫V|vVvne=vnFinGComplUSGraph¬EFin
21 20 adantl ¬VFinnV¬e𝒫V|vVvne=vnFinGComplUSGraph¬EFin
22 11 21 mpd ¬VFinnVGComplUSGraph¬EFin
23 3 22 exlimddv ¬VFinGComplUSGraph¬EFin
24 23 com12 GComplUSGraph¬VFin¬EFin
25 24 con4d GComplUSGraphEFinVFin
26 25 imp GComplUSGraphEFinVFin