Description: If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018) (Revised by AV, 11-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cusgrfi.v | |
|
cusgrfi.e | |
||
Assertion | cusgrfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrfi.v | |
|
2 | cusgrfi.e | |
|
3 | nfielex | |
|
4 | eqeq1 | |
|
5 | 4 | anbi2d | |
6 | 5 | rexbidv | |
7 | 6 | cbvrabv | |
8 | eqid | |
|
9 | 1 7 8 | cusgrfilem3 | |
10 | 9 | notbid | |
11 | 10 | biimpac | |
12 | 1 7 | cusgrfilem1 | |
13 | 2 | eleq1i | |
14 | ssfi | |
|
15 | 14 | expcom | |
16 | 13 15 | biimtrid | |
17 | 16 | con3d | |
18 | 12 17 | syl | |
19 | 18 | expcom | |
20 | 19 | com23 | |
21 | 20 | adantl | |
22 | 11 21 | mpd | |
23 | 3 22 | exlimddv | |
24 | 23 | com12 | |
25 | 24 | con4d | |
26 | 25 | imp | |