| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycsubmcmn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
cycsubmcmn.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
cycsubmcmn.f |
⊢ 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) ) |
| 4 |
|
cycsubmcmn.c |
⊢ 𝐶 = ran 𝐹 |
| 5 |
1 2 3 4
|
cycsubm |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → 𝐶 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 7 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐶 ) = ( 𝐺 ↾s 𝐶 ) |
| 8 |
1 6 7
|
issubm2 |
⊢ ( 𝐺 ∈ Mnd → ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝐶 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝐶 ∧ ( 𝐺 ↾s 𝐶 ) ∈ Mnd ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝐶 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝐶 ∧ ( 𝐺 ↾s 𝐶 ) ∈ Mnd ) ) ) |
| 10 |
|
simp3 |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝐶 ∧ ( 𝐺 ↾s 𝐶 ) ∈ Mnd ) → ( 𝐺 ↾s 𝐶 ) ∈ Mnd ) |
| 11 |
9 10
|
biimtrdi |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐺 ↾s 𝐶 ) ∈ Mnd ) ) |
| 12 |
5 11
|
mpd |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝐺 ↾s 𝐶 ) ∈ Mnd ) |
| 13 |
7
|
submbas |
⊢ ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → 𝐶 = ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ) |
| 14 |
5 13
|
syl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → 𝐶 = ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ) |
| 15 |
14
|
eqcomd |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) = 𝐶 ) |
| 16 |
15
|
eleq2d |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ↔ 𝑥 ∈ 𝐶 ) ) |
| 17 |
15
|
eleq2d |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ↔ 𝑦 ∈ 𝐶 ) ) |
| 18 |
16 17
|
anbi12d |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 19 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 20 |
1 2 3 4 19
|
cycsubmcom |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 21 |
5
|
adantr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐶 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 22 |
7 19
|
ressplusg |
⊢ ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) ) |
| 23 |
22
|
eqcomd |
⊢ ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) = ( +g ‘ 𝐺 ) ) |
| 24 |
23
|
oveqd |
⊢ ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 25 |
23
|
oveqd |
⊢ ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 26 |
24 25
|
eqeq12d |
⊢ ( 𝐶 ∈ ( SubMnd ‘ 𝐺 ) → ( ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 27 |
21 26
|
syl |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 28 |
20 27
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ) |
| 29 |
28
|
ex |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ) ) |
| 30 |
18 29
|
sylbid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ) → ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ) ) |
| 31 |
30
|
ralrimivv |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ) |
| 32 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) = ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) |
| 33 |
|
eqid |
⊢ ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) = ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) |
| 34 |
32 33
|
iscmn |
⊢ ( ( 𝐺 ↾s 𝐶 ) ∈ CMnd ↔ ( ( 𝐺 ↾s 𝐶 ) ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s 𝐶 ) ) ( 𝑥 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑦 ) = ( 𝑦 ( +g ‘ ( 𝐺 ↾s 𝐶 ) ) 𝑥 ) ) ) |
| 35 |
12 31 34
|
sylanbrc |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝐺 ↾s 𝐶 ) ∈ CMnd ) |