Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
β’ π = ( β€/nβ€ β π ) |
2 |
|
rpvmasum.l |
β’ πΏ = ( β€RHom β π ) |
3 |
|
rpvmasum.a |
β’ ( π β π β β ) |
4 |
|
dchrmusum.g |
β’ πΊ = ( DChr β π ) |
5 |
|
dchrmusum.d |
β’ π· = ( Base β πΊ ) |
6 |
|
dchrmusum.1 |
β’ 1 = ( 0g β πΊ ) |
7 |
|
dchrmusum.b |
β’ ( π β π β π· ) |
8 |
|
dchrmusum.n1 |
β’ ( π β π β 1 ) |
9 |
|
dchrmusum.f |
β’ πΉ = ( π β β β¦ ( ( π β ( πΏ β π ) ) / π ) ) |
10 |
|
dchrmusum.c |
β’ ( π β πΆ β ( 0 [,) +β ) ) |
11 |
|
dchrmusum.t |
β’ ( π β seq 1 ( + , πΉ ) β π ) |
12 |
|
dchrmusum.2 |
β’ ( π β β π¦ β ( 1 [,) +β ) ( abs β ( ( seq 1 ( + , πΉ ) β ( β β π¦ ) ) β π ) ) β€ ( πΆ / π¦ ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrisumn0 |
β’ ( π β π β 0 ) |
14 |
13
|
adantr |
β’ ( ( π β§ π₯ β β+ ) β π β 0 ) |
15 |
|
ifnefalse |
β’ ( π β 0 β if ( π = 0 , ( log β π₯ ) , 0 ) = 0 ) |
16 |
14 15
|
syl |
β’ ( ( π β§ π₯ β β+ ) β if ( π = 0 , ( log β π₯ ) , 0 ) = 0 ) |
17 |
16
|
oveq2d |
β’ ( ( π β§ π₯ β β+ ) β ( Ξ£ π β ( 1 ... ( β β π₯ ) ) ( ( π β ( πΏ β π ) ) Β· ( ( Ξ β π ) / π ) ) + if ( π = 0 , ( log β π₯ ) , 0 ) ) = ( Ξ£ π β ( 1 ... ( β β π₯ ) ) ( ( π β ( πΏ β π ) ) Β· ( ( Ξ β π ) / π ) ) + 0 ) ) |
18 |
|
fzfid |
β’ ( ( π β§ π₯ β β+ ) β ( 1 ... ( β β π₯ ) ) β Fin ) |
19 |
7
|
ad2antrr |
β’ ( ( ( π β§ π₯ β β+ ) β§ π β ( 1 ... ( β β π₯ ) ) ) β π β π· ) |
20 |
|
elfzelz |
β’ ( π β ( 1 ... ( β β π₯ ) ) β π β β€ ) |
21 |
20
|
adantl |
β’ ( ( ( π β§ π₯ β β+ ) β§ π β ( 1 ... ( β β π₯ ) ) ) β π β β€ ) |
22 |
4 1 5 2 19 21
|
dchrzrhcl |
β’ ( ( ( π β§ π₯ β β+ ) β§ π β ( 1 ... ( β β π₯ ) ) ) β ( π β ( πΏ β π ) ) β β ) |
23 |
|
elfznn |
β’ ( π β ( 1 ... ( β β π₯ ) ) β π β β ) |
24 |
23
|
adantl |
β’ ( ( ( π β§ π₯ β β+ ) β§ π β ( 1 ... ( β β π₯ ) ) ) β π β β ) |
25 |
|
vmacl |
β’ ( π β β β ( Ξ β π ) β β ) |
26 |
|
nndivre |
β’ ( ( ( Ξ β π ) β β β§ π β β ) β ( ( Ξ β π ) / π ) β β ) |
27 |
25 26
|
mpancom |
β’ ( π β β β ( ( Ξ β π ) / π ) β β ) |
28 |
24 27
|
syl |
β’ ( ( ( π β§ π₯ β β+ ) β§ π β ( 1 ... ( β β π₯ ) ) ) β ( ( Ξ β π ) / π ) β β ) |
29 |
28
|
recnd |
β’ ( ( ( π β§ π₯ β β+ ) β§ π β ( 1 ... ( β β π₯ ) ) ) β ( ( Ξ β π ) / π ) β β ) |
30 |
22 29
|
mulcld |
β’ ( ( ( π β§ π₯ β β+ ) β§ π β ( 1 ... ( β β π₯ ) ) ) β ( ( π β ( πΏ β π ) ) Β· ( ( Ξ β π ) / π ) ) β β ) |
31 |
18 30
|
fsumcl |
β’ ( ( π β§ π₯ β β+ ) β Ξ£ π β ( 1 ... ( β β π₯ ) ) ( ( π β ( πΏ β π ) ) Β· ( ( Ξ β π ) / π ) ) β β ) |
32 |
31
|
addridd |
β’ ( ( π β§ π₯ β β+ ) β ( Ξ£ π β ( 1 ... ( β β π₯ ) ) ( ( π β ( πΏ β π ) ) Β· ( ( Ξ β π ) / π ) ) + 0 ) = Ξ£ π β ( 1 ... ( β β π₯ ) ) ( ( π β ( πΏ β π ) ) Β· ( ( Ξ β π ) / π ) ) ) |
33 |
17 32
|
eqtrd |
β’ ( ( π β§ π₯ β β+ ) β ( Ξ£ π β ( 1 ... ( β β π₯ ) ) ( ( π β ( πΏ β π ) ) Β· ( ( Ξ β π ) / π ) ) + if ( π = 0 , ( log β π₯ ) , 0 ) ) = Ξ£ π β ( 1 ... ( β β π₯ ) ) ( ( π β ( πΏ β π ) ) Β· ( ( Ξ β π ) / π ) ) ) |
34 |
33
|
mpteq2dva |
β’ ( π β ( π₯ β β+ β¦ ( Ξ£ π β ( 1 ... ( β β π₯ ) ) ( ( π β ( πΏ β π ) ) Β· ( ( Ξ β π ) / π ) ) + if ( π = 0 , ( log β π₯ ) , 0 ) ) ) = ( π₯ β β+ β¦ Ξ£ π β ( 1 ... ( β β π₯ ) ) ( ( π β ( πΏ β π ) ) Β· ( ( Ξ β π ) / π ) ) ) ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrvmasumif |
β’ ( π β ( π₯ β β+ β¦ ( Ξ£ π β ( 1 ... ( β β π₯ ) ) ( ( π β ( πΏ β π ) ) Β· ( ( Ξ β π ) / π ) ) + if ( π = 0 , ( log β π₯ ) , 0 ) ) ) β π(1) ) |
36 |
34 35
|
eqeltrrd |
β’ ( π β ( π₯ β β+ β¦ Ξ£ π β ( 1 ... ( β β π₯ ) ) ( ( π β ( πΏ β π ) ) Β· ( ( Ξ β π ) / π ) ) ) β π(1) ) |