Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
dchrmusum.g |
|- G = ( DChr ` N ) |
5 |
|
dchrmusum.d |
|- D = ( Base ` G ) |
6 |
|
dchrmusum.1 |
|- .1. = ( 0g ` G ) |
7 |
|
dchrmusum.b |
|- ( ph -> X e. D ) |
8 |
|
dchrmusum.n1 |
|- ( ph -> X =/= .1. ) |
9 |
|
dchrmusum.f |
|- F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) |
10 |
|
dchrmusum.c |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
11 |
|
dchrmusum.t |
|- ( ph -> seq 1 ( + , F ) ~~> T ) |
12 |
|
dchrmusum.2 |
|- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - T ) ) <_ ( C / y ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrisumn0 |
|- ( ph -> T =/= 0 ) |
14 |
13
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> T =/= 0 ) |
15 |
|
ifnefalse |
|- ( T =/= 0 -> if ( T = 0 , ( log ` x ) , 0 ) = 0 ) |
16 |
14 15
|
syl |
|- ( ( ph /\ x e. RR+ ) -> if ( T = 0 , ( log ` x ) , 0 ) = 0 ) |
17 |
16
|
oveq2d |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( T = 0 , ( log ` x ) , 0 ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + 0 ) ) |
18 |
|
fzfid |
|- ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
19 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> X e. D ) |
20 |
|
elfzelz |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. ZZ ) |
21 |
20
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. ZZ ) |
22 |
4 1 5 2 19 21
|
dchrzrhcl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( X ` ( L ` n ) ) e. CC ) |
23 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
24 |
23
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
25 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
26 |
|
nndivre |
|- ( ( ( Lam ` n ) e. RR /\ n e. NN ) -> ( ( Lam ` n ) / n ) e. RR ) |
27 |
25 26
|
mpancom |
|- ( n e. NN -> ( ( Lam ` n ) / n ) e. RR ) |
28 |
24 27
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
29 |
28
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) |
30 |
22 29
|
mulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
31 |
18 30
|
fsumcl |
|- ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
32 |
31
|
addid1d |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + 0 ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) |
33 |
17 32
|
eqtrd |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( T = 0 , ( log ` x ) , 0 ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) |
34 |
33
|
mpteq2dva |
|- ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( T = 0 , ( log ` x ) , 0 ) ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrvmasumif |
|- ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( T = 0 , ( log ` x ) , 0 ) ) ) e. O(1) ) |
36 |
34 35
|
eqeltrrd |
|- ( ph -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) e. O(1) ) |