Metamath Proof Explorer


Theorem dfdif3

Description: Alternate definition of class difference. (Contributed by BJ and Jim Kingdon, 16-Jun-2022) (Proof shortened by SN, 15-Aug-2025)

Ref Expression
Assertion dfdif3 ( 𝐴𝐵 ) = { 𝑥𝐴 ∣ ∀ 𝑦𝐵 𝑥𝑦 }

Proof

Step Hyp Ref Expression
1 dfdif2 ( 𝐴𝐵 ) = { 𝑥𝐴 ∣ ¬ 𝑥𝐵 }
2 nelb ( ¬ 𝑥𝐵 ↔ ∀ 𝑦𝐵 𝑦𝑥 )
3 necom ( 𝑦𝑥𝑥𝑦 )
4 3 ralbii ( ∀ 𝑦𝐵 𝑦𝑥 ↔ ∀ 𝑦𝐵 𝑥𝑦 )
5 2 4 bitri ( ¬ 𝑥𝐵 ↔ ∀ 𝑦𝐵 𝑥𝑦 )
6 1 5 rabbieq ( 𝐴𝐵 ) = { 𝑥𝐴 ∣ ∀ 𝑦𝐵 𝑥𝑦 }