Description: Alternate definition of class difference. (Contributed by BJ and Jim Kingdon, 16-Jun-2022) (Proof shortened by SN, 15-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | dfdif3 | ⊢ ( 𝐴 ∖ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 | ⊢ ( 𝐴 ∖ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } | |
2 | nelb | ⊢ ( ¬ 𝑥 ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 𝑦 ≠ 𝑥 ) | |
3 | necom | ⊢ ( 𝑦 ≠ 𝑥 ↔ 𝑥 ≠ 𝑦 ) | |
4 | 3 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝑦 ≠ 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 ) |
5 | 2 4 | bitri | ⊢ ( ¬ 𝑥 ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 ) |
6 | 1 5 | rabbieq | ⊢ ( 𝐴 ∖ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 } |