Description: Alternate definition of class difference. (Contributed by BJ and Jim Kingdon, 16-Jun-2022) (Proof shortened by SN, 15-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | dfdif3 | |- ( A \ B ) = { x e. A | A. y e. B x =/= y } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 | |- ( A \ B ) = { x e. A | -. x e. B } |
|
2 | nelb | |- ( -. x e. B <-> A. y e. B y =/= x ) |
|
3 | necom | |- ( y =/= x <-> x =/= y ) |
|
4 | 3 | ralbii | |- ( A. y e. B y =/= x <-> A. y e. B x =/= y ) |
5 | 2 4 | bitri | |- ( -. x e. B <-> A. y e. B x =/= y ) |
6 | 1 5 | rabbieq | |- ( A \ B ) = { x e. A | A. y e. B x =/= y } |