Metamath Proof Explorer


Theorem dfdif3

Description: Alternate definition of class difference. (Contributed by BJ and Jim Kingdon, 16-Jun-2022) (Proof shortened by SN, 15-Aug-2025)

Ref Expression
Assertion dfdif3
|- ( A \ B ) = { x e. A | A. y e. B x =/= y }

Proof

Step Hyp Ref Expression
1 dfdif2
 |-  ( A \ B ) = { x e. A | -. x e. B }
2 nelb
 |-  ( -. x e. B <-> A. y e. B y =/= x )
3 necom
 |-  ( y =/= x <-> x =/= y )
4 3 ralbii
 |-  ( A. y e. B y =/= x <-> A. y e. B x =/= y )
5 2 4 bitri
 |-  ( -. x e. B <-> A. y e. B x =/= y )
6 1 5 rabbieq
 |-  ( A \ B ) = { x e. A | A. y e. B x =/= y }