| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfdif2 |
⊢ ( 𝐴 ∖ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } |
| 2 |
|
ax6ev |
⊢ ∃ 𝑦 𝑦 = 𝑥 |
| 3 |
2
|
biantrur |
⊢ ( ¬ 𝑥 ∈ 𝐵 ↔ ( ∃ 𝑦 𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 4 |
|
19.41v |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ( ∃ 𝑦 𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 5 |
3 4
|
bitr4i |
⊢ ( ¬ 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 6 |
|
sbalex |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 7 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
| 8 |
7
|
imbi1i |
⊢ ( ( 𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 9 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 10 |
9
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑦 ∈ 𝐵 ) ) |
| 11 |
10
|
pm5.74i |
⊢ ( ( 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 = 𝑦 → ¬ 𝑦 ∈ 𝐵 ) ) |
| 12 |
|
con2b |
⊢ ( ( 𝑥 = 𝑦 → ¬ 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 → ¬ 𝑥 = 𝑦 ) ) |
| 13 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) |
| 14 |
13
|
bicomi |
⊢ ( ¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦 ) |
| 15 |
14
|
imbi2i |
⊢ ( ( 𝑦 ∈ 𝐵 → ¬ 𝑥 = 𝑦 ) ↔ ( 𝑦 ∈ 𝐵 → 𝑥 ≠ 𝑦 ) ) |
| 16 |
11 12 15
|
3bitri |
⊢ ( ( 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 → 𝑥 ≠ 𝑦 ) ) |
| 17 |
8 16
|
bitri |
⊢ ( ( 𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 → 𝑥 ≠ 𝑦 ) ) |
| 18 |
17
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑥 ≠ 𝑦 ) ) |
| 19 |
5 6 18
|
3bitri |
⊢ ( ¬ 𝑥 ∈ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑥 ≠ 𝑦 ) ) |
| 20 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑥 ≠ 𝑦 ) ) |
| 21 |
19 20
|
bitr4i |
⊢ ( ¬ 𝑥 ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 ) |
| 22 |
21
|
rabbii |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵 } = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 } |
| 23 |
1 22
|
eqtri |
⊢ ( 𝐴 ∖ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐵 𝑥 ≠ 𝑦 } |