Step |
Hyp |
Ref |
Expression |
1 |
|
dflim4 |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ) ) |
2 |
|
ord0eln0 |
⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
3 |
2
|
anbi1d |
⊢ ( Ord 𝐴 → ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ) ↔ ( 𝐴 ≠ ∅ ∧ ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ) ) ) |
4 |
3
|
biancomd |
⊢ ( Ord 𝐴 → ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ) ↔ ( ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅ ) ) ) |
5 |
4
|
pm5.32i |
⊢ ( ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ) ) ↔ ( Ord 𝐴 ∧ ( ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅ ) ) ) |
6 |
|
3anass |
⊢ ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ) ↔ ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ) ) ) |
7 |
|
3anass |
⊢ ( ( Ord 𝐴 ∧ ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅ ) ↔ ( Ord 𝐴 ∧ ( ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅ ) ) ) |
8 |
5 6 7
|
3bitr4i |
⊢ ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ) ↔ ( Ord 𝐴 ∧ ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅ ) ) |
9 |
1 8
|
bitri |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∀ 𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅ ) ) |