Metamath Proof Explorer


Theorem dflim7

Description: A limit ordinal is a non-zero ordinal that contains all the successors of its elements. Lemma 1.18 of Schloeder p. 2. Closely related to dflim4 . (Contributed by RP, 17-Jan-2025)

Ref Expression
Assertion dflim7 ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∀ 𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 dflim4 ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑏𝐴 suc 𝑏𝐴 ) )
2 ord0eln0 ( Ord 𝐴 → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
3 2 anbi1d ( Ord 𝐴 → ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑏𝐴 suc 𝑏𝐴 ) ↔ ( 𝐴 ≠ ∅ ∧ ∀ 𝑏𝐴 suc 𝑏𝐴 ) ) )
4 3 biancomd ( Ord 𝐴 → ( ( ∅ ∈ 𝐴 ∧ ∀ 𝑏𝐴 suc 𝑏𝐴 ) ↔ ( ∀ 𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅ ) ) )
5 4 pm5.32i ( ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑏𝐴 suc 𝑏𝐴 ) ) ↔ ( Ord 𝐴 ∧ ( ∀ 𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅ ) ) )
6 3anass ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑏𝐴 suc 𝑏𝐴 ) ↔ ( Ord 𝐴 ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑏𝐴 suc 𝑏𝐴 ) ) )
7 3anass ( ( Ord 𝐴 ∧ ∀ 𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅ ) ↔ ( Ord 𝐴 ∧ ( ∀ 𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅ ) ) )
8 5 6 7 3bitr4i ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑏𝐴 suc 𝑏𝐴 ) ↔ ( Ord 𝐴 ∧ ∀ 𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅ ) )
9 1 8 bitri ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∀ 𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅ ) )