Metamath Proof Explorer


Theorem dflim7

Description: A limit ordinal is a non-zero ordinal that contains all the successors of its elements. Lemma 1.18 of Schloeder p. 2. Closely related to dflim4 . (Contributed by RP, 17-Jan-2025)

Ref Expression
Assertion dflim7 Lim A Ord A b A suc b A A

Proof

Step Hyp Ref Expression
1 dflim4 Lim A Ord A A b A suc b A
2 ord0eln0 Ord A A A
3 2 anbi1d Ord A A b A suc b A A b A suc b A
4 3 biancomd Ord A A b A suc b A b A suc b A A
5 4 pm5.32i Ord A A b A suc b A Ord A b A suc b A A
6 3anass Ord A A b A suc b A Ord A A b A suc b A
7 3anass Ord A b A suc b A A Ord A b A suc b A A
8 5 6 7 3bitr4i Ord A A b A suc b A Ord A b A suc b A A
9 1 8 bitri Lim A Ord A b A suc b A A