Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dfsymrel5 | ⊢ ( SymRel 𝑅 ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ∧ Rel 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsymrel2 | ⊢ ( SymRel 𝑅 ↔ ( ◡ 𝑅 ⊆ 𝑅 ∧ Rel 𝑅 ) ) | |
2 | relcnveq4 | ⊢ ( Rel 𝑅 → ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) | |
3 | 2 | pm5.32ri | ⊢ ( ( ◡ 𝑅 ⊆ 𝑅 ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ∧ Rel 𝑅 ) ) |
4 | 1 3 | bitri | ⊢ ( SymRel 𝑅 ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ∧ Rel 𝑅 ) ) |