Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsymrel5 | |- ( SymRel R <-> ( A. x A. y ( x R y <-> y R x ) /\ Rel R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsymrel2 | |- ( SymRel R <-> ( `' R C_ R /\ Rel R ) ) |
|
| 2 | relcnveq4 | |- ( Rel R -> ( `' R C_ R <-> A. x A. y ( x R y <-> y R x ) ) ) |
|
| 3 | 2 | pm5.32ri | |- ( ( `' R C_ R /\ Rel R ) <-> ( A. x A. y ( x R y <-> y R x ) /\ Rel R ) ) |
| 4 | 1 3 | bitri | |- ( SymRel R <-> ( A. x A. y ( x R y <-> y R x ) /\ Rel R ) ) |