Step |
Hyp |
Ref |
Expression |
1 |
|
dftr6.1 |
⊢ 𝐴 ∈ V |
2 |
1
|
elrn |
⊢ ( 𝐴 ∈ ran ( ( E ∘ E ) ∖ E ) ↔ ∃ 𝑥 𝑥 ( ( E ∘ E ) ∖ E ) 𝐴 ) |
3 |
|
brdif |
⊢ ( 𝑥 ( ( E ∘ E ) ∖ E ) 𝐴 ↔ ( 𝑥 ( E ∘ E ) 𝐴 ∧ ¬ 𝑥 E 𝐴 ) ) |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
4 1
|
brco |
⊢ ( 𝑥 ( E ∘ E ) 𝐴 ↔ ∃ 𝑦 ( 𝑥 E 𝑦 ∧ 𝑦 E 𝐴 ) ) |
6 |
|
epel |
⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) |
7 |
1
|
epeli |
⊢ ( 𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴 ) |
8 |
6 7
|
anbi12i |
⊢ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝐴 ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 E 𝑦 ∧ 𝑦 E 𝐴 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) |
10 |
5 9
|
bitri |
⊢ ( 𝑥 ( E ∘ E ) 𝐴 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) |
11 |
1
|
epeli |
⊢ ( 𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴 ) |
12 |
11
|
notbii |
⊢ ( ¬ 𝑥 E 𝐴 ↔ ¬ 𝑥 ∈ 𝐴 ) |
13 |
10 12
|
anbi12i |
⊢ ( ( 𝑥 ( E ∘ E ) 𝐴 ∧ ¬ 𝑥 E 𝐴 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
14 |
|
19.41v |
⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
15 |
|
exanali |
⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ↔ ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
16 |
14 15
|
bitr3i |
⊢ ( ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ↔ ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
17 |
3 13 16
|
3bitri |
⊢ ( 𝑥 ( ( E ∘ E ) ∖ E ) 𝐴 ↔ ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
18 |
17
|
exbii |
⊢ ( ∃ 𝑥 𝑥 ( ( E ∘ E ) ∖ E ) 𝐴 ↔ ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
19 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ↔ ¬ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
20 |
2 18 19
|
3bitri |
⊢ ( 𝐴 ∈ ran ( ( E ∘ E ) ∖ E ) ↔ ¬ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
21 |
20
|
con2bii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ↔ ¬ 𝐴 ∈ ran ( ( E ∘ E ) ∖ E ) ) |
22 |
|
dftr2 |
⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
23 |
|
eldif |
⊢ ( 𝐴 ∈ ( V ∖ ran ( ( E ∘ E ) ∖ E ) ) ↔ ( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ ran ( ( E ∘ E ) ∖ E ) ) ) |
24 |
1 23
|
mpbiran |
⊢ ( 𝐴 ∈ ( V ∖ ran ( ( E ∘ E ) ∖ E ) ) ↔ ¬ 𝐴 ∈ ran ( ( E ∘ E ) ∖ E ) ) |
25 |
21 22 24
|
3bitr4i |
⊢ ( Tr 𝐴 ↔ 𝐴 ∈ ( V ∖ ran ( ( E ∘ E ) ∖ E ) ) ) |