| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dia2dimlem4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
dia2dimlem4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
dia2dimlem4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dia2dimlem4.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dia2dimlem4.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
|
dia2dimlem4.p |
⊢ ( 𝜑 → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 7 |
|
dia2dimlem4.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑇 ) |
| 8 |
|
dia2dimlem4.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑇 ) |
| 9 |
|
dia2dimlem4.gv |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑃 ) = 𝑄 ) |
| 10 |
|
dia2dimlem4.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑇 ) |
| 11 |
|
dia2dimlem4.dv |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑄 ) = ( 𝐹 ‘ 𝑃 ) ) |
| 12 |
3 4
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐷 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐷 ∘ 𝐺 ) ∈ 𝑇 ) |
| 13 |
5 10 8 12
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ∘ 𝐺 ) ∈ 𝑇 ) |
| 14 |
6
|
simpld |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
| 15 |
1 2 3 4
|
ltrncoval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐷 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝐷 ∘ 𝐺 ) ‘ 𝑃 ) = ( 𝐷 ‘ ( 𝐺 ‘ 𝑃 ) ) ) |
| 16 |
5 10 8 14 15
|
syl121anc |
⊢ ( 𝜑 → ( ( 𝐷 ∘ 𝐺 ) ‘ 𝑃 ) = ( 𝐷 ‘ ( 𝐺 ‘ 𝑃 ) ) ) |
| 17 |
9
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐺 ‘ 𝑃 ) ) = ( 𝐷 ‘ 𝑄 ) ) |
| 18 |
16 17 11
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐷 ∘ 𝐺 ) ‘ 𝑃 ) = ( 𝐹 ‘ 𝑃 ) ) |
| 19 |
1 2 3 4
|
cdlemd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐷 ∘ 𝐺 ) ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( ( 𝐷 ∘ 𝐺 ) ‘ 𝑃 ) = ( 𝐹 ‘ 𝑃 ) ) → ( 𝐷 ∘ 𝐺 ) = 𝐹 ) |
| 20 |
5 13 7 6 18 19
|
syl311anc |
⊢ ( 𝜑 → ( 𝐷 ∘ 𝐺 ) = 𝐹 ) |