Step |
Hyp |
Ref |
Expression |
1 |
|
dia2dimlem4.l |
|- .<_ = ( le ` K ) |
2 |
|
dia2dimlem4.a |
|- A = ( Atoms ` K ) |
3 |
|
dia2dimlem4.h |
|- H = ( LHyp ` K ) |
4 |
|
dia2dimlem4.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
dia2dimlem4.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
dia2dimlem4.p |
|- ( ph -> ( P e. A /\ -. P .<_ W ) ) |
7 |
|
dia2dimlem4.f |
|- ( ph -> F e. T ) |
8 |
|
dia2dimlem4.g |
|- ( ph -> G e. T ) |
9 |
|
dia2dimlem4.gv |
|- ( ph -> ( G ` P ) = Q ) |
10 |
|
dia2dimlem4.d |
|- ( ph -> D e. T ) |
11 |
|
dia2dimlem4.dv |
|- ( ph -> ( D ` Q ) = ( F ` P ) ) |
12 |
3 4
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ D e. T /\ G e. T ) -> ( D o. G ) e. T ) |
13 |
5 10 8 12
|
syl3anc |
|- ( ph -> ( D o. G ) e. T ) |
14 |
6
|
simpld |
|- ( ph -> P e. A ) |
15 |
1 2 3 4
|
ltrncoval |
|- ( ( ( K e. HL /\ W e. H ) /\ ( D e. T /\ G e. T ) /\ P e. A ) -> ( ( D o. G ) ` P ) = ( D ` ( G ` P ) ) ) |
16 |
5 10 8 14 15
|
syl121anc |
|- ( ph -> ( ( D o. G ) ` P ) = ( D ` ( G ` P ) ) ) |
17 |
9
|
fveq2d |
|- ( ph -> ( D ` ( G ` P ) ) = ( D ` Q ) ) |
18 |
16 17 11
|
3eqtrd |
|- ( ph -> ( ( D o. G ) ` P ) = ( F ` P ) ) |
19 |
1 2 3 4
|
cdlemd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( D o. G ) e. T /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( D o. G ) ` P ) = ( F ` P ) ) -> ( D o. G ) = F ) |
20 |
5 13 7 6 18 19
|
syl311anc |
|- ( ph -> ( D o. G ) = F ) |