Metamath Proof Explorer


Theorem dia2dimlem5

Description: Lemma for dia2dim . The sum of vectors G and D belongs to the sum of the subspaces generated by them. Thus, F = ( G o. D ) belongs to the subspace sum. Part of proof of Lemma M in Crawley p. 121 line 5. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem5.l
|- .<_ = ( le ` K )
dia2dimlem5.j
|- .\/ = ( join ` K )
dia2dimlem5.m
|- ./\ = ( meet ` K )
dia2dimlem5.a
|- A = ( Atoms ` K )
dia2dimlem5.h
|- H = ( LHyp ` K )
dia2dimlem5.t
|- T = ( ( LTrn ` K ) ` W )
dia2dimlem5.r
|- R = ( ( trL ` K ) ` W )
dia2dimlem5.y
|- Y = ( ( DVecA ` K ) ` W )
dia2dimlem5.s
|- S = ( LSubSp ` Y )
dia2dimlem5.pl
|- .(+) = ( LSSum ` Y )
dia2dimlem5.n
|- N = ( LSpan ` Y )
dia2dimlem5.i
|- I = ( ( DIsoA ` K ) ` W )
dia2dimlem5.q
|- Q = ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) )
dia2dimlem5.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dia2dimlem5.u
|- ( ph -> ( U e. A /\ U .<_ W ) )
dia2dimlem5.v
|- ( ph -> ( V e. A /\ V .<_ W ) )
dia2dimlem5.p
|- ( ph -> ( P e. A /\ -. P .<_ W ) )
dia2dimlem5.f
|- ( ph -> ( F e. T /\ ( F ` P ) =/= P ) )
dia2dimlem5.rf
|- ( ph -> ( R ` F ) .<_ ( U .\/ V ) )
dia2dimlem5.uv
|- ( ph -> U =/= V )
dia2dimlem5.ru
|- ( ph -> ( R ` F ) =/= U )
dia2dimlem5.rv
|- ( ph -> ( R ` F ) =/= V )
dia2dimlem5.g
|- ( ph -> G e. T )
dia2dimlem5.gv
|- ( ph -> ( G ` P ) = Q )
dia2dimlem5.d
|- ( ph -> D e. T )
dia2dimlem5.dv
|- ( ph -> ( D ` Q ) = ( F ` P ) )
Assertion dia2dimlem5
|- ( ph -> F e. ( ( I ` U ) .(+) ( I ` V ) ) )

Proof

Step Hyp Ref Expression
1 dia2dimlem5.l
 |-  .<_ = ( le ` K )
2 dia2dimlem5.j
 |-  .\/ = ( join ` K )
3 dia2dimlem5.m
 |-  ./\ = ( meet ` K )
4 dia2dimlem5.a
 |-  A = ( Atoms ` K )
5 dia2dimlem5.h
 |-  H = ( LHyp ` K )
6 dia2dimlem5.t
 |-  T = ( ( LTrn ` K ) ` W )
7 dia2dimlem5.r
 |-  R = ( ( trL ` K ) ` W )
8 dia2dimlem5.y
 |-  Y = ( ( DVecA ` K ) ` W )
9 dia2dimlem5.s
 |-  S = ( LSubSp ` Y )
10 dia2dimlem5.pl
 |-  .(+) = ( LSSum ` Y )
11 dia2dimlem5.n
 |-  N = ( LSpan ` Y )
12 dia2dimlem5.i
 |-  I = ( ( DIsoA ` K ) ` W )
13 dia2dimlem5.q
 |-  Q = ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) )
14 dia2dimlem5.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
15 dia2dimlem5.u
 |-  ( ph -> ( U e. A /\ U .<_ W ) )
16 dia2dimlem5.v
 |-  ( ph -> ( V e. A /\ V .<_ W ) )
17 dia2dimlem5.p
 |-  ( ph -> ( P e. A /\ -. P .<_ W ) )
18 dia2dimlem5.f
 |-  ( ph -> ( F e. T /\ ( F ` P ) =/= P ) )
19 dia2dimlem5.rf
 |-  ( ph -> ( R ` F ) .<_ ( U .\/ V ) )
20 dia2dimlem5.uv
 |-  ( ph -> U =/= V )
21 dia2dimlem5.ru
 |-  ( ph -> ( R ` F ) =/= U )
22 dia2dimlem5.rv
 |-  ( ph -> ( R ` F ) =/= V )
23 dia2dimlem5.g
 |-  ( ph -> G e. T )
24 dia2dimlem5.gv
 |-  ( ph -> ( G ` P ) = Q )
25 dia2dimlem5.d
 |-  ( ph -> D e. T )
26 dia2dimlem5.dv
 |-  ( ph -> ( D ` Q ) = ( F ` P ) )
27 eqid
 |-  ( +g ` Y ) = ( +g ` Y )
28 5 6 8 27 dvavadd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( D e. T /\ G e. T ) ) -> ( D ( +g ` Y ) G ) = ( D o. G ) )
29 14 25 23 28 syl12anc
 |-  ( ph -> ( D ( +g ` Y ) G ) = ( D o. G ) )
30 18 simpld
 |-  ( ph -> F e. T )
31 1 4 5 6 14 17 30 23 24 25 26 dia2dimlem4
 |-  ( ph -> ( D o. G ) = F )
32 29 31 eqtr2d
 |-  ( ph -> F = ( D ( +g ` Y ) G ) )
33 5 8 dvalvec
 |-  ( ( K e. HL /\ W e. H ) -> Y e. LVec )
34 lveclmod
 |-  ( Y e. LVec -> Y e. LMod )
35 14 33 34 3syl
 |-  ( ph -> Y e. LMod )
36 9 lsssssubg
 |-  ( Y e. LMod -> S C_ ( SubGrp ` Y ) )
37 35 36 syl
 |-  ( ph -> S C_ ( SubGrp ` Y ) )
38 16 simpld
 |-  ( ph -> V e. A )
39 eqid
 |-  ( Base ` K ) = ( Base ` K )
40 39 4 atbase
 |-  ( V e. A -> V e. ( Base ` K ) )
41 38 40 syl
 |-  ( ph -> V e. ( Base ` K ) )
42 16 simprd
 |-  ( ph -> V .<_ W )
43 39 1 5 8 12 9 dialss
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( V e. ( Base ` K ) /\ V .<_ W ) ) -> ( I ` V ) e. S )
44 14 41 42 43 syl12anc
 |-  ( ph -> ( I ` V ) e. S )
45 37 44 sseldd
 |-  ( ph -> ( I ` V ) e. ( SubGrp ` Y ) )
46 15 simpld
 |-  ( ph -> U e. A )
47 39 4 atbase
 |-  ( U e. A -> U e. ( Base ` K ) )
48 46 47 syl
 |-  ( ph -> U e. ( Base ` K ) )
49 15 simprd
 |-  ( ph -> U .<_ W )
50 39 1 5 8 12 9 dialss
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( U e. ( Base ` K ) /\ U .<_ W ) ) -> ( I ` U ) e. S )
51 14 48 49 50 syl12anc
 |-  ( ph -> ( I ` U ) e. S )
52 37 51 sseldd
 |-  ( ph -> ( I ` U ) e. ( SubGrp ` Y ) )
53 5 6 7 8 12 11 dia1dim2
 |-  ( ( ( K e. HL /\ W e. H ) /\ D e. T ) -> ( I ` ( R ` D ) ) = ( N ` { D } ) )
54 14 25 53 syl2anc
 |-  ( ph -> ( I ` ( R ` D ) ) = ( N ` { D } ) )
55 1 2 3 4 5 6 7 13 14 15 16 17 18 19 20 21 22 25 26 dia2dimlem3
 |-  ( ph -> ( R ` D ) = V )
56 55 fveq2d
 |-  ( ph -> ( I ` ( R ` D ) ) = ( I ` V ) )
57 eqss
 |-  ( ( I ` ( R ` D ) ) = ( I ` V ) <-> ( ( I ` ( R ` D ) ) C_ ( I ` V ) /\ ( I ` V ) C_ ( I ` ( R ` D ) ) ) )
58 56 57 sylib
 |-  ( ph -> ( ( I ` ( R ` D ) ) C_ ( I ` V ) /\ ( I ` V ) C_ ( I ` ( R ` D ) ) ) )
59 58 simpld
 |-  ( ph -> ( I ` ( R ` D ) ) C_ ( I ` V ) )
60 54 59 eqsstrrd
 |-  ( ph -> ( N ` { D } ) C_ ( I ` V ) )
61 eqid
 |-  ( Base ` Y ) = ( Base ` Y )
62 5 6 8 61 dvavbase
 |-  ( ( K e. HL /\ W e. H ) -> ( Base ` Y ) = T )
63 14 62 syl
 |-  ( ph -> ( Base ` Y ) = T )
64 25 63 eleqtrrd
 |-  ( ph -> D e. ( Base ` Y ) )
65 61 9 11 35 44 64 lspsnel5
 |-  ( ph -> ( D e. ( I ` V ) <-> ( N ` { D } ) C_ ( I ` V ) ) )
66 60 65 mpbird
 |-  ( ph -> D e. ( I ` V ) )
67 5 6 7 8 12 11 dia1dim2
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( I ` ( R ` G ) ) = ( N ` { G } ) )
68 14 23 67 syl2anc
 |-  ( ph -> ( I ` ( R ` G ) ) = ( N ` { G } ) )
69 1 2 3 4 5 6 7 13 14 15 16 17 18 19 22 23 24 dia2dimlem2
 |-  ( ph -> ( R ` G ) = U )
70 69 fveq2d
 |-  ( ph -> ( I ` ( R ` G ) ) = ( I ` U ) )
71 eqss
 |-  ( ( I ` ( R ` G ) ) = ( I ` U ) <-> ( ( I ` ( R ` G ) ) C_ ( I ` U ) /\ ( I ` U ) C_ ( I ` ( R ` G ) ) ) )
72 70 71 sylib
 |-  ( ph -> ( ( I ` ( R ` G ) ) C_ ( I ` U ) /\ ( I ` U ) C_ ( I ` ( R ` G ) ) ) )
73 72 simpld
 |-  ( ph -> ( I ` ( R ` G ) ) C_ ( I ` U ) )
74 68 73 eqsstrrd
 |-  ( ph -> ( N ` { G } ) C_ ( I ` U ) )
75 23 63 eleqtrrd
 |-  ( ph -> G e. ( Base ` Y ) )
76 61 9 11 35 51 75 lspsnel5
 |-  ( ph -> ( G e. ( I ` U ) <-> ( N ` { G } ) C_ ( I ` U ) ) )
77 74 76 mpbird
 |-  ( ph -> G e. ( I ` U ) )
78 27 10 lsmelvali
 |-  ( ( ( ( I ` V ) e. ( SubGrp ` Y ) /\ ( I ` U ) e. ( SubGrp ` Y ) ) /\ ( D e. ( I ` V ) /\ G e. ( I ` U ) ) ) -> ( D ( +g ` Y ) G ) e. ( ( I ` V ) .(+) ( I ` U ) ) )
79 45 52 66 77 78 syl22anc
 |-  ( ph -> ( D ( +g ` Y ) G ) e. ( ( I ` V ) .(+) ( I ` U ) ) )
80 32 79 eqeltrd
 |-  ( ph -> F e. ( ( I ` V ) .(+) ( I ` U ) ) )
81 lmodabl
 |-  ( Y e. LMod -> Y e. Abel )
82 35 81 syl
 |-  ( ph -> Y e. Abel )
83 10 lsmcom
 |-  ( ( Y e. Abel /\ ( I ` V ) e. ( SubGrp ` Y ) /\ ( I ` U ) e. ( SubGrp ` Y ) ) -> ( ( I ` V ) .(+) ( I ` U ) ) = ( ( I ` U ) .(+) ( I ` V ) ) )
84 82 45 52 83 syl3anc
 |-  ( ph -> ( ( I ` V ) .(+) ( I ` U ) ) = ( ( I ` U ) .(+) ( I ` V ) ) )
85 80 84 eleqtrd
 |-  ( ph -> F e. ( ( I ` U ) .(+) ( I ` V ) ) )