Step |
Hyp |
Ref |
Expression |
1 |
|
dia2dimlem3.l |
|- .<_ = ( le ` K ) |
2 |
|
dia2dimlem3.j |
|- .\/ = ( join ` K ) |
3 |
|
dia2dimlem3.m |
|- ./\ = ( meet ` K ) |
4 |
|
dia2dimlem3.a |
|- A = ( Atoms ` K ) |
5 |
|
dia2dimlem3.h |
|- H = ( LHyp ` K ) |
6 |
|
dia2dimlem3.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
dia2dimlem3.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
dia2dimlem3.q |
|- Q = ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) |
9 |
|
dia2dimlem3.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
dia2dimlem3.u |
|- ( ph -> ( U e. A /\ U .<_ W ) ) |
11 |
|
dia2dimlem3.v |
|- ( ph -> ( V e. A /\ V .<_ W ) ) |
12 |
|
dia2dimlem3.p |
|- ( ph -> ( P e. A /\ -. P .<_ W ) ) |
13 |
|
dia2dimlem3.f |
|- ( ph -> ( F e. T /\ ( F ` P ) =/= P ) ) |
14 |
|
dia2dimlem3.rf |
|- ( ph -> ( R ` F ) .<_ ( U .\/ V ) ) |
15 |
|
dia2dimlem3.uv |
|- ( ph -> U =/= V ) |
16 |
|
dia2dimlem3.ru |
|- ( ph -> ( R ` F ) =/= U ) |
17 |
|
dia2dimlem3.rv |
|- ( ph -> ( R ` F ) =/= V ) |
18 |
|
dia2dimlem3.d |
|- ( ph -> D e. T ) |
19 |
|
dia2dimlem3.dv |
|- ( ph -> ( D ` Q ) = ( F ` P ) ) |
20 |
9
|
simpld |
|- ( ph -> K e. HL ) |
21 |
13
|
simpld |
|- ( ph -> F e. T ) |
22 |
1 4 5 6
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
23 |
9 21 12 22
|
syl3anc |
|- ( ph -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
24 |
23
|
simpld |
|- ( ph -> ( F ` P ) e. A ) |
25 |
11
|
simpld |
|- ( ph -> V e. A ) |
26 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ ( F ` P ) e. A /\ V e. A ) -> V .<_ ( ( F ` P ) .\/ V ) ) |
27 |
20 24 25 26
|
syl3anc |
|- ( ph -> V .<_ ( ( F ` P ) .\/ V ) ) |
28 |
20
|
hllatd |
|- ( ph -> K e. Lat ) |
29 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
30 |
29 4
|
atbase |
|- ( V e. A -> V e. ( Base ` K ) ) |
31 |
25 30
|
syl |
|- ( ph -> V e. ( Base ` K ) ) |
32 |
29 2 4
|
hlatjcl |
|- ( ( K e. HL /\ ( F ` P ) e. A /\ V e. A ) -> ( ( F ` P ) .\/ V ) e. ( Base ` K ) ) |
33 |
20 24 25 32
|
syl3anc |
|- ( ph -> ( ( F ` P ) .\/ V ) e. ( Base ` K ) ) |
34 |
1 4 5 6 7
|
trlat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) =/= P ) ) -> ( R ` F ) e. A ) |
35 |
9 12 13 34
|
syl3anc |
|- ( ph -> ( R ` F ) e. A ) |
36 |
10
|
simpld |
|- ( ph -> U e. A ) |
37 |
29 2 4
|
hlatjcl |
|- ( ( K e. HL /\ ( R ` F ) e. A /\ U e. A ) -> ( ( R ` F ) .\/ U ) e. ( Base ` K ) ) |
38 |
20 35 36 37
|
syl3anc |
|- ( ph -> ( ( R ` F ) .\/ U ) e. ( Base ` K ) ) |
39 |
29 1 3
|
latmlem2 |
|- ( ( K e. Lat /\ ( V e. ( Base ` K ) /\ ( ( F ` P ) .\/ V ) e. ( Base ` K ) /\ ( ( R ` F ) .\/ U ) e. ( Base ` K ) ) ) -> ( V .<_ ( ( F ` P ) .\/ V ) -> ( ( ( R ` F ) .\/ U ) ./\ V ) .<_ ( ( ( R ` F ) .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) ) |
40 |
28 31 33 38 39
|
syl13anc |
|- ( ph -> ( V .<_ ( ( F ` P ) .\/ V ) -> ( ( ( R ` F ) .\/ U ) ./\ V ) .<_ ( ( ( R ` F ) .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) ) |
41 |
27 40
|
mpd |
|- ( ph -> ( ( ( R ` F ) .\/ U ) ./\ V ) .<_ ( ( ( R ` F ) .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) |
42 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ U e. A /\ V e. A ) -> ( U .\/ V ) = ( V .\/ U ) ) |
43 |
20 36 25 42
|
syl3anc |
|- ( ph -> ( U .\/ V ) = ( V .\/ U ) ) |
44 |
14 43
|
breqtrd |
|- ( ph -> ( R ` F ) .<_ ( V .\/ U ) ) |
45 |
1 2 4
|
hlatexch2 |
|- ( ( K e. HL /\ ( ( R ` F ) e. A /\ V e. A /\ U e. A ) /\ ( R ` F ) =/= U ) -> ( ( R ` F ) .<_ ( V .\/ U ) -> V .<_ ( ( R ` F ) .\/ U ) ) ) |
46 |
20 35 25 36 16 45
|
syl131anc |
|- ( ph -> ( ( R ` F ) .<_ ( V .\/ U ) -> V .<_ ( ( R ` F ) .\/ U ) ) ) |
47 |
44 46
|
mpd |
|- ( ph -> V .<_ ( ( R ` F ) .\/ U ) ) |
48 |
29 1 3
|
latleeqm2 |
|- ( ( K e. Lat /\ V e. ( Base ` K ) /\ ( ( R ` F ) .\/ U ) e. ( Base ` K ) ) -> ( V .<_ ( ( R ` F ) .\/ U ) <-> ( ( ( R ` F ) .\/ U ) ./\ V ) = V ) ) |
49 |
28 31 38 48
|
syl3anc |
|- ( ph -> ( V .<_ ( ( R ` F ) .\/ U ) <-> ( ( ( R ` F ) .\/ U ) ./\ V ) = V ) ) |
50 |
47 49
|
mpbid |
|- ( ph -> ( ( ( R ` F ) .\/ U ) ./\ V ) = V ) |
51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
dia2dimlem1 |
|- ( ph -> ( Q e. A /\ -. Q .<_ W ) ) |
52 |
1 2 3 4 5 6 7
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ D e. T /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( R ` D ) = ( ( Q .\/ ( D ` Q ) ) ./\ W ) ) |
53 |
9 18 51 52
|
syl3anc |
|- ( ph -> ( R ` D ) = ( ( Q .\/ ( D ` Q ) ) ./\ W ) ) |
54 |
8
|
a1i |
|- ( ph -> Q = ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) |
55 |
54 19
|
oveq12d |
|- ( ph -> ( Q .\/ ( D ` Q ) ) = ( ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) .\/ ( F ` P ) ) ) |
56 |
12
|
simpld |
|- ( ph -> P e. A ) |
57 |
29 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ U e. A ) -> ( P .\/ U ) e. ( Base ` K ) ) |
58 |
20 56 36 57
|
syl3anc |
|- ( ph -> ( P .\/ U ) e. ( Base ` K ) ) |
59 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ ( F ` P ) e. A /\ V e. A ) -> ( F ` P ) .<_ ( ( F ` P ) .\/ V ) ) |
60 |
20 24 25 59
|
syl3anc |
|- ( ph -> ( F ` P ) .<_ ( ( F ` P ) .\/ V ) ) |
61 |
29 1 2 3 4
|
atmod4i1 |
|- ( ( K e. HL /\ ( ( F ` P ) e. A /\ ( P .\/ U ) e. ( Base ` K ) /\ ( ( F ` P ) .\/ V ) e. ( Base ` K ) ) /\ ( F ` P ) .<_ ( ( F ` P ) .\/ V ) ) -> ( ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) .\/ ( F ` P ) ) = ( ( ( P .\/ U ) .\/ ( F ` P ) ) ./\ ( ( F ` P ) .\/ V ) ) ) |
62 |
20 24 58 33 60 61
|
syl131anc |
|- ( ph -> ( ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) .\/ ( F ` P ) ) = ( ( ( P .\/ U ) .\/ ( F ` P ) ) ./\ ( ( F ` P ) .\/ V ) ) ) |
63 |
2 4
|
hlatj32 |
|- ( ( K e. HL /\ ( P e. A /\ U e. A /\ ( F ` P ) e. A ) ) -> ( ( P .\/ U ) .\/ ( F ` P ) ) = ( ( P .\/ ( F ` P ) ) .\/ U ) ) |
64 |
20 56 36 24 63
|
syl13anc |
|- ( ph -> ( ( P .\/ U ) .\/ ( F ` P ) ) = ( ( P .\/ ( F ` P ) ) .\/ U ) ) |
65 |
64
|
oveq1d |
|- ( ph -> ( ( ( P .\/ U ) .\/ ( F ` P ) ) ./\ ( ( F ` P ) .\/ V ) ) = ( ( ( P .\/ ( F ` P ) ) .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) |
66 |
55 62 65
|
3eqtrd |
|- ( ph -> ( Q .\/ ( D ` Q ) ) = ( ( ( P .\/ ( F ` P ) ) .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) |
67 |
66
|
oveq1d |
|- ( ph -> ( ( Q .\/ ( D ` Q ) ) ./\ W ) = ( ( ( ( P .\/ ( F ` P ) ) .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ./\ W ) ) |
68 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
69 |
20 68
|
syl |
|- ( ph -> K e. OL ) |
70 |
29 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ ( F ` P ) e. A ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
71 |
20 56 24 70
|
syl3anc |
|- ( ph -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
72 |
29 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
73 |
36 72
|
syl |
|- ( ph -> U e. ( Base ` K ) ) |
74 |
29 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( P .\/ ( F ` P ) ) .\/ U ) e. ( Base ` K ) ) |
75 |
28 71 73 74
|
syl3anc |
|- ( ph -> ( ( P .\/ ( F ` P ) ) .\/ U ) e. ( Base ` K ) ) |
76 |
9
|
simprd |
|- ( ph -> W e. H ) |
77 |
29 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
78 |
76 77
|
syl |
|- ( ph -> W e. ( Base ` K ) ) |
79 |
29 3
|
latm32 |
|- ( ( K e. OL /\ ( ( ( P .\/ ( F ` P ) ) .\/ U ) e. ( Base ` K ) /\ ( ( F ` P ) .\/ V ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ ( F ` P ) ) .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ./\ W ) = ( ( ( ( P .\/ ( F ` P ) ) .\/ U ) ./\ W ) ./\ ( ( F ` P ) .\/ V ) ) ) |
80 |
69 75 33 78 79
|
syl13anc |
|- ( ph -> ( ( ( ( P .\/ ( F ` P ) ) .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ./\ W ) = ( ( ( ( P .\/ ( F ` P ) ) .\/ U ) ./\ W ) ./\ ( ( F ` P ) .\/ V ) ) ) |
81 |
1 2 3 4 5 6 7
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) |
82 |
9 21 12 81
|
syl3anc |
|- ( ph -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) |
83 |
82
|
oveq1d |
|- ( ph -> ( ( R ` F ) .\/ U ) = ( ( ( P .\/ ( F ` P ) ) ./\ W ) .\/ U ) ) |
84 |
10
|
simprd |
|- ( ph -> U .<_ W ) |
85 |
29 1 2 3 4
|
atmod4i1 |
|- ( ( K e. HL /\ ( U e. A /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ U .<_ W ) -> ( ( ( P .\/ ( F ` P ) ) ./\ W ) .\/ U ) = ( ( ( P .\/ ( F ` P ) ) .\/ U ) ./\ W ) ) |
86 |
20 36 71 78 84 85
|
syl131anc |
|- ( ph -> ( ( ( P .\/ ( F ` P ) ) ./\ W ) .\/ U ) = ( ( ( P .\/ ( F ` P ) ) .\/ U ) ./\ W ) ) |
87 |
83 86
|
eqtr2d |
|- ( ph -> ( ( ( P .\/ ( F ` P ) ) .\/ U ) ./\ W ) = ( ( R ` F ) .\/ U ) ) |
88 |
87
|
oveq1d |
|- ( ph -> ( ( ( ( P .\/ ( F ` P ) ) .\/ U ) ./\ W ) ./\ ( ( F ` P ) .\/ V ) ) = ( ( ( R ` F ) .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) |
89 |
67 80 88
|
3eqtrd |
|- ( ph -> ( ( Q .\/ ( D ` Q ) ) ./\ W ) = ( ( ( R ` F ) .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) |
90 |
53 89
|
eqtr2d |
|- ( ph -> ( ( ( R ` F ) .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) = ( R ` D ) ) |
91 |
41 50 90
|
3brtr3d |
|- ( ph -> V .<_ ( R ` D ) ) |
92 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
93 |
20 92
|
syl |
|- ( ph -> K e. AtLat ) |
94 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
95 |
20 94
|
syl |
|- ( ph -> K e. OP ) |
96 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
97 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
98 |
96 97 4
|
0ltat |
|- ( ( K e. OP /\ V e. A ) -> ( 0. ` K ) ( lt ` K ) V ) |
99 |
95 25 98
|
syl2anc |
|- ( ph -> ( 0. ` K ) ( lt ` K ) V ) |
100 |
|
hlpos |
|- ( K e. HL -> K e. Poset ) |
101 |
20 100
|
syl |
|- ( ph -> K e. Poset ) |
102 |
29 96
|
op0cl |
|- ( K e. OP -> ( 0. ` K ) e. ( Base ` K ) ) |
103 |
95 102
|
syl |
|- ( ph -> ( 0. ` K ) e. ( Base ` K ) ) |
104 |
29 5 6 7
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ D e. T ) -> ( R ` D ) e. ( Base ` K ) ) |
105 |
9 18 104
|
syl2anc |
|- ( ph -> ( R ` D ) e. ( Base ` K ) ) |
106 |
29 1 97
|
pltletr |
|- ( ( K e. Poset /\ ( ( 0. ` K ) e. ( Base ` K ) /\ V e. ( Base ` K ) /\ ( R ` D ) e. ( Base ` K ) ) ) -> ( ( ( 0. ` K ) ( lt ` K ) V /\ V .<_ ( R ` D ) ) -> ( 0. ` K ) ( lt ` K ) ( R ` D ) ) ) |
107 |
101 103 31 105 106
|
syl13anc |
|- ( ph -> ( ( ( 0. ` K ) ( lt ` K ) V /\ V .<_ ( R ` D ) ) -> ( 0. ` K ) ( lt ` K ) ( R ` D ) ) ) |
108 |
99 91 107
|
mp2and |
|- ( ph -> ( 0. ` K ) ( lt ` K ) ( R ` D ) ) |
109 |
29 97 96
|
opltn0 |
|- ( ( K e. OP /\ ( R ` D ) e. ( Base ` K ) ) -> ( ( 0. ` K ) ( lt ` K ) ( R ` D ) <-> ( R ` D ) =/= ( 0. ` K ) ) ) |
110 |
95 105 109
|
syl2anc |
|- ( ph -> ( ( 0. ` K ) ( lt ` K ) ( R ` D ) <-> ( R ` D ) =/= ( 0. ` K ) ) ) |
111 |
108 110
|
mpbid |
|- ( ph -> ( R ` D ) =/= ( 0. ` K ) ) |
112 |
111
|
neneqd |
|- ( ph -> -. ( R ` D ) = ( 0. ` K ) ) |
113 |
96 4 5 6 7
|
trlator0 |
|- ( ( ( K e. HL /\ W e. H ) /\ D e. T ) -> ( ( R ` D ) e. A \/ ( R ` D ) = ( 0. ` K ) ) ) |
114 |
9 18 113
|
syl2anc |
|- ( ph -> ( ( R ` D ) e. A \/ ( R ` D ) = ( 0. ` K ) ) ) |
115 |
114
|
orcomd |
|- ( ph -> ( ( R ` D ) = ( 0. ` K ) \/ ( R ` D ) e. A ) ) |
116 |
115
|
ord |
|- ( ph -> ( -. ( R ` D ) = ( 0. ` K ) -> ( R ` D ) e. A ) ) |
117 |
112 116
|
mpd |
|- ( ph -> ( R ` D ) e. A ) |
118 |
1 4
|
atcmp |
|- ( ( K e. AtLat /\ V e. A /\ ( R ` D ) e. A ) -> ( V .<_ ( R ` D ) <-> V = ( R ` D ) ) ) |
119 |
93 25 117 118
|
syl3anc |
|- ( ph -> ( V .<_ ( R ` D ) <-> V = ( R ` D ) ) ) |
120 |
91 119
|
mpbid |
|- ( ph -> V = ( R ` D ) ) |
121 |
120
|
eqcomd |
|- ( ph -> ( R ` D ) = V ) |