Step |
Hyp |
Ref |
Expression |
1 |
|
dia2dimlem3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
dia2dimlem3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
dia2dimlem3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
dia2dimlem3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dia2dimlem3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
dia2dimlem3.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
dia2dimlem3.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dia2dimlem3.q |
⊢ 𝑄 = ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
9 |
|
dia2dimlem3.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
dia2dimlem3.u |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) |
11 |
|
dia2dimlem3.v |
⊢ ( 𝜑 → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
12 |
|
dia2dimlem3.p |
⊢ ( 𝜑 → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
13 |
|
dia2dimlem3.f |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) |
14 |
|
dia2dimlem3.rf |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑈 ∨ 𝑉 ) ) |
15 |
|
dia2dimlem3.uv |
⊢ ( 𝜑 → 𝑈 ≠ 𝑉 ) |
16 |
|
dia2dimlem3.ru |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≠ 𝑈 ) |
17 |
|
dia2dimlem3.rv |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≠ 𝑉 ) |
18 |
|
dia2dimlem3.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑇 ) |
19 |
|
dia2dimlem3.dv |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑄 ) = ( 𝐹 ‘ 𝑃 ) ) |
20 |
9
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
21 |
13
|
simpld |
⊢ ( 𝜑 → 𝐹 ∈ 𝑇 ) |
22 |
1 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
23 |
9 21 12 22
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
24 |
23
|
simpld |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
25 |
11
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ 𝐴 ) |
26 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → 𝑉 ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
27 |
20 24 25 26
|
syl3anc |
⊢ ( 𝜑 → 𝑉 ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
28 |
20
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
30 |
29 4
|
atbase |
⊢ ( 𝑉 ∈ 𝐴 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
31 |
25 30
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
32 |
29 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
33 |
20 24 25 32
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
34 |
1 4 5 6 7
|
trlat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
35 |
9 12 13 34
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
36 |
10
|
simpld |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
37 |
29 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
38 |
20 35 36 37
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
39 |
29 1 3
|
latmlem2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑉 ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) → ( ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ 𝑉 ) ≤ ( ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) ) |
40 |
28 31 33 38 39
|
syl13anc |
⊢ ( 𝜑 → ( 𝑉 ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) → ( ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ 𝑉 ) ≤ ( ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) ) |
41 |
27 40
|
mpd |
⊢ ( 𝜑 → ( ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ 𝑉 ) ≤ ( ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
42 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( 𝑈 ∨ 𝑉 ) = ( 𝑉 ∨ 𝑈 ) ) |
43 |
20 36 25 42
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ∨ 𝑉 ) = ( 𝑉 ∨ 𝑈 ) ) |
44 |
14 43
|
breqtrd |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑉 ∨ 𝑈 ) ) |
45 |
1 2 4
|
hlatexch2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ 𝑈 ) → ( ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑉 ∨ 𝑈 ) → 𝑉 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ) ) |
46 |
20 35 25 36 16 45
|
syl131anc |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑉 ∨ 𝑈 ) → 𝑉 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ) ) |
47 |
44 46
|
mpd |
⊢ ( 𝜑 → 𝑉 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ) |
48 |
29 1 3
|
latleeqm2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑉 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ↔ ( ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ 𝑉 ) = 𝑉 ) ) |
49 |
28 31 38 48
|
syl3anc |
⊢ ( 𝜑 → ( 𝑉 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ↔ ( ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ 𝑉 ) = 𝑉 ) ) |
50 |
47 49
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ 𝑉 ) = 𝑉 ) |
51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
dia2dimlem1 |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
52 |
1 2 3 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐷 ∈ 𝑇 ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐷 ) = ( ( 𝑄 ∨ ( 𝐷 ‘ 𝑄 ) ) ∧ 𝑊 ) ) |
53 |
9 18 51 52
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐷 ) = ( ( 𝑄 ∨ ( 𝐷 ‘ 𝑄 ) ) ∧ 𝑊 ) ) |
54 |
8
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
55 |
54 19
|
oveq12d |
⊢ ( 𝜑 → ( 𝑄 ∨ ( 𝐷 ‘ 𝑄 ) ) = ( ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
56 |
12
|
simpld |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
57 |
29 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
58 |
20 56 36 57
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
59 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
60 |
20 24 25 59
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
61 |
29 1 2 3 4
|
atmod4i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) → ( ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∨ ( 𝐹 ‘ 𝑃 ) ) = ( ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
62 |
20 24 58 33 60 61
|
syl131anc |
⊢ ( 𝜑 → ( ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∨ ( 𝐹 ‘ 𝑃 ) ) = ( ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
63 |
2 4
|
hlatj32 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝐹 ‘ 𝑃 ) ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ) |
64 |
20 56 36 24 63
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝐹 ‘ 𝑃 ) ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ) |
65 |
64
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) = ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
66 |
55 62 65
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑄 ∨ ( 𝐷 ‘ 𝑄 ) ) = ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
67 |
66
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ∨ ( 𝐷 ‘ 𝑄 ) ) ∧ 𝑊 ) = ( ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) |
68 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
69 |
20 68
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ OL ) |
70 |
29 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
71 |
20 56 24 70
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
72 |
29 4
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
73 |
36 72
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
74 |
29 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
75 |
28 71 73 74
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
76 |
9
|
simprd |
⊢ ( 𝜑 → 𝑊 ∈ 𝐻 ) |
77 |
29 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
78 |
76 77
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
79 |
29 3
|
latm32 |
⊢ ( ( 𝐾 ∈ OL ∧ ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) = ( ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∧ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
80 |
69 75 33 78 79
|
syl13anc |
⊢ ( 𝜑 → ( ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) = ( ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∧ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
81 |
1 2 3 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
82 |
9 21 12 81
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
83 |
82
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) = ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ 𝑈 ) ) |
84 |
10
|
simprd |
⊢ ( 𝜑 → 𝑈 ≤ 𝑊 ) |
85 |
29 1 2 3 4
|
atmod4i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ 𝑈 ) = ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∧ 𝑊 ) ) |
86 |
20 36 71 78 84 85
|
syl131anc |
⊢ ( 𝜑 → ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ 𝑈 ) = ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∧ 𝑊 ) ) |
87 |
83 86
|
eqtr2d |
⊢ ( 𝜑 → ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∧ 𝑊 ) = ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ) |
88 |
87
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑈 ) ∧ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) = ( ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
89 |
67 80 88
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ∨ ( 𝐷 ‘ 𝑄 ) ) ∧ 𝑊 ) = ( ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
90 |
53 89
|
eqtr2d |
⊢ ( 𝜑 → ( ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) = ( 𝑅 ‘ 𝐷 ) ) |
91 |
41 50 90
|
3brtr3d |
⊢ ( 𝜑 → 𝑉 ≤ ( 𝑅 ‘ 𝐷 ) ) |
92 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
93 |
20 92
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ AtLat ) |
94 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
95 |
20 94
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ OP ) |
96 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
97 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
98 |
96 97 4
|
0ltat |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑉 ∈ 𝐴 ) → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑉 ) |
99 |
95 25 98
|
syl2anc |
⊢ ( 𝜑 → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑉 ) |
100 |
|
hlpos |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Poset ) |
101 |
20 100
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
102 |
29 96
|
op0cl |
⊢ ( 𝐾 ∈ OP → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
103 |
95 102
|
syl |
⊢ ( 𝜑 → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
104 |
29 5 6 7
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐷 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐷 ) ∈ ( Base ‘ 𝐾 ) ) |
105 |
9 18 104
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐷 ) ∈ ( Base ‘ 𝐾 ) ) |
106 |
29 1 97
|
pltletr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐷 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑉 ∧ 𝑉 ≤ ( 𝑅 ‘ 𝐷 ) ) → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( 𝑅 ‘ 𝐷 ) ) ) |
107 |
101 103 31 105 106
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑉 ∧ 𝑉 ≤ ( 𝑅 ‘ 𝐷 ) ) → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( 𝑅 ‘ 𝐷 ) ) ) |
108 |
99 91 107
|
mp2and |
⊢ ( 𝜑 → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( 𝑅 ‘ 𝐷 ) ) |
109 |
29 97 96
|
opltn0 |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑅 ‘ 𝐷 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( 𝑅 ‘ 𝐷 ) ↔ ( 𝑅 ‘ 𝐷 ) ≠ ( 0. ‘ 𝐾 ) ) ) |
110 |
95 105 109
|
syl2anc |
⊢ ( 𝜑 → ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( 𝑅 ‘ 𝐷 ) ↔ ( 𝑅 ‘ 𝐷 ) ≠ ( 0. ‘ 𝐾 ) ) ) |
111 |
108 110
|
mpbid |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐷 ) ≠ ( 0. ‘ 𝐾 ) ) |
112 |
111
|
neneqd |
⊢ ( 𝜑 → ¬ ( 𝑅 ‘ 𝐷 ) = ( 0. ‘ 𝐾 ) ) |
113 |
96 4 5 6 7
|
trlator0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐷 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐷 ) ∈ 𝐴 ∨ ( 𝑅 ‘ 𝐷 ) = ( 0. ‘ 𝐾 ) ) ) |
114 |
9 18 113
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝐷 ) ∈ 𝐴 ∨ ( 𝑅 ‘ 𝐷 ) = ( 0. ‘ 𝐾 ) ) ) |
115 |
114
|
orcomd |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝐷 ) = ( 0. ‘ 𝐾 ) ∨ ( 𝑅 ‘ 𝐷 ) ∈ 𝐴 ) ) |
116 |
115
|
ord |
⊢ ( 𝜑 → ( ¬ ( 𝑅 ‘ 𝐷 ) = ( 0. ‘ 𝐾 ) → ( 𝑅 ‘ 𝐷 ) ∈ 𝐴 ) ) |
117 |
112 116
|
mpd |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐷 ) ∈ 𝐴 ) |
118 |
1 4
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑉 ∈ 𝐴 ∧ ( 𝑅 ‘ 𝐷 ) ∈ 𝐴 ) → ( 𝑉 ≤ ( 𝑅 ‘ 𝐷 ) ↔ 𝑉 = ( 𝑅 ‘ 𝐷 ) ) ) |
119 |
93 25 117 118
|
syl3anc |
⊢ ( 𝜑 → ( 𝑉 ≤ ( 𝑅 ‘ 𝐷 ) ↔ 𝑉 = ( 𝑅 ‘ 𝐷 ) ) ) |
120 |
91 119
|
mpbid |
⊢ ( 𝜑 → 𝑉 = ( 𝑅 ‘ 𝐷 ) ) |
121 |
120
|
eqcomd |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐷 ) = 𝑉 ) |