Step |
Hyp |
Ref |
Expression |
1 |
|
dia2dimlem1.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
dia2dimlem1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
dia2dimlem1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
dia2dimlem1.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dia2dimlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
dia2dimlem1.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
dia2dimlem1.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dia2dimlem1.q |
⊢ 𝑄 = ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
9 |
|
dia2dimlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
dia2dimlem1.u |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) |
11 |
|
dia2dimlem1.v |
⊢ ( 𝜑 → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
12 |
|
dia2dimlem1.p |
⊢ ( 𝜑 → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
13 |
|
dia2dimlem1.f |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) |
14 |
|
dia2dimlem1.rf |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑈 ∨ 𝑉 ) ) |
15 |
|
dia2dimlem1.uv |
⊢ ( 𝜑 → 𝑈 ≠ 𝑉 ) |
16 |
|
dia2dimlem1.ru |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≠ 𝑈 ) |
17 |
9
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
18 |
12
|
simpld |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
19 |
1 4 5 6 7
|
trlat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
20 |
9 12 13 19
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
21 |
10
|
simpld |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
22 |
13
|
simpld |
⊢ ( 𝜑 → 𝐹 ∈ 𝑇 ) |
23 |
1 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
24 |
9 22 12 23
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
25 |
24
|
simpld |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
26 |
11
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ 𝐴 ) |
27 |
12
|
simprd |
⊢ ( 𝜑 → ¬ 𝑃 ≤ 𝑊 ) |
28 |
1 5 6 7
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
29 |
9 22 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
30 |
10
|
simprd |
⊢ ( 𝜑 → 𝑈 ≤ 𝑊 ) |
31 |
17
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
33 |
32 4
|
atbase |
⊢ ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
34 |
20 33
|
syl |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
35 |
32 4
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
36 |
21 35
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
37 |
9
|
simprd |
⊢ ( 𝜑 → 𝑊 ∈ 𝐻 ) |
38 |
32 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
40 |
32 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ∧ 𝑈 ≤ 𝑊 ) ↔ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ≤ 𝑊 ) ) |
41 |
31 34 36 39 40
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ∧ 𝑈 ≤ 𝑊 ) ↔ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ≤ 𝑊 ) ) |
42 |
29 30 41
|
mpbi2and |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ≤ 𝑊 ) |
43 |
32 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
44 |
18 43
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
45 |
32 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
46 |
17 20 21 45
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
47 |
32 1
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ≤ 𝑊 ) → 𝑃 ≤ 𝑊 ) ) |
48 |
31 44 46 39 47
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑃 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ≤ 𝑊 ) → 𝑃 ≤ 𝑊 ) ) |
49 |
42 48
|
mpan2d |
⊢ ( 𝜑 → ( 𝑃 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) → 𝑃 ≤ 𝑊 ) ) |
50 |
27 49
|
mtod |
⊢ ( 𝜑 → ¬ 𝑃 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ) |
51 |
11
|
simprd |
⊢ ( 𝜑 → 𝑉 ≤ 𝑊 ) |
52 |
24
|
simprd |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) |
53 |
|
nbrne2 |
⊢ ( ( 𝑉 ≤ 𝑊 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) → 𝑉 ≠ ( 𝐹 ‘ 𝑃 ) ) |
54 |
51 52 53
|
syl2anc |
⊢ ( 𝜑 → 𝑉 ≠ ( 𝐹 ‘ 𝑃 ) ) |
55 |
54
|
necomd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ≠ 𝑉 ) |
56 |
50 55
|
jca |
⊢ ( 𝜑 → ( ¬ 𝑃 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑉 ) ) |
57 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑈 ) = ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) → 𝐾 ∈ Lat ) |
58 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑈 ) = ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
59 |
32 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑉 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
60 |
17 26 21 59
|
syl3anc |
⊢ ( 𝜑 → ( 𝑉 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑈 ) = ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) → ( 𝑉 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
62 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑈 ) = ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
63 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → 𝑉 ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
64 |
17 25 26 63
|
syl3anc |
⊢ ( 𝜑 → 𝑉 ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑈 ) = ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) → 𝑉 ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
66 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑈 ) = ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) → ( 𝑃 ∨ 𝑈 ) = ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
67 |
65 66
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑈 ) = ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) → 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ) |
68 |
15
|
necomd |
⊢ ( 𝜑 → 𝑉 ≠ 𝑈 ) |
69 |
1 2 4
|
hlatexch2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ 𝑉 ≠ 𝑈 ) → ( 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) → 𝑃 ≤ ( 𝑉 ∨ 𝑈 ) ) ) |
70 |
17 26 18 21 68 69
|
syl131anc |
⊢ ( 𝜑 → ( 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) → 𝑃 ≤ ( 𝑉 ∨ 𝑈 ) ) ) |
71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑈 ) = ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) → ( 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) → 𝑃 ≤ ( 𝑉 ∨ 𝑈 ) ) ) |
72 |
67 71
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑈 ) = ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) → 𝑃 ≤ ( 𝑉 ∨ 𝑈 ) ) |
73 |
32 4
|
atbase |
⊢ ( 𝑉 ∈ 𝐴 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
74 |
26 73
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
75 |
32 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑉 ≤ 𝑊 ∧ 𝑈 ≤ 𝑊 ) ↔ ( 𝑉 ∨ 𝑈 ) ≤ 𝑊 ) ) |
76 |
31 74 36 39 75
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑉 ≤ 𝑊 ∧ 𝑈 ≤ 𝑊 ) ↔ ( 𝑉 ∨ 𝑈 ) ≤ 𝑊 ) ) |
77 |
51 30 76
|
mpbi2and |
⊢ ( 𝜑 → ( 𝑉 ∨ 𝑈 ) ≤ 𝑊 ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑈 ) = ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) → ( 𝑉 ∨ 𝑈 ) ≤ 𝑊 ) |
79 |
32 1 57 58 61 62 72 78
|
lattrd |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑈 ) = ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) → 𝑃 ≤ 𝑊 ) |
80 |
79
|
ex |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑈 ) = ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) → 𝑃 ≤ 𝑊 ) ) |
81 |
80
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 𝑃 ≤ 𝑊 → ( 𝑃 ∨ 𝑈 ) ≠ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
82 |
27 81
|
mpd |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑈 ) ≠ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
83 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
84 |
17 18 25 83
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
85 |
1 2 3 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
86 |
9 22 12 85
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
87 |
86
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑃 ∨ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) ) |
88 |
32 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
89 |
17 18 25 88
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
90 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
91 |
17 18 25 90
|
syl3anc |
⊢ ( 𝜑 → 𝑃 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
92 |
32 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑃 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑃 ∨ 𝑊 ) ) ) |
93 |
17 18 89 39 91 92
|
syl131anc |
⊢ ( 𝜑 → ( 𝑃 ∨ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑃 ∨ 𝑊 ) ) ) |
94 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
95 |
1 2 94 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
96 |
9 12 95
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
97 |
96
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑃 ∨ 𝑊 ) ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 1. ‘ 𝐾 ) ) ) |
98 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
99 |
17 98
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ OL ) |
100 |
32 3 94
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
101 |
99 89 100
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
102 |
97 101
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑃 ∨ 𝑊 ) ) = ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
103 |
93 102
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 ∨ ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) = ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
104 |
87 103
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
105 |
84 104
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
106 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( 𝑈 ∨ 𝑉 ) = ( 𝑉 ∨ 𝑈 ) ) |
107 |
17 21 26 106
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ∨ 𝑉 ) = ( 𝑉 ∨ 𝑈 ) ) |
108 |
14 107
|
breqtrd |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑉 ∨ 𝑈 ) ) |
109 |
1 2 4
|
hlatexch2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ 𝑈 ) → ( ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑉 ∨ 𝑈 ) → 𝑉 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ) ) |
110 |
17 20 26 21 16 109
|
syl131anc |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑉 ∨ 𝑈 ) → 𝑉 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ) ) |
111 |
108 110
|
mpd |
⊢ ( 𝜑 → 𝑉 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ) |
112 |
105 111
|
jca |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ 𝑉 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ) ) |
113 |
1 2 3 4
|
ps-2c |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ∧ ( ( ¬ 𝑃 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑉 ) ∧ ( 𝑃 ∨ 𝑈 ) ≠ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ 𝑉 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑈 ) ) ) ) → ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∈ 𝐴 ) |
114 |
17 18 20 21 25 26 56 82 112 113
|
syl333anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∈ 𝐴 ) |
115 |
8 114
|
eqeltrid |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
116 |
32 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
117 |
17 18 21 116
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
118 |
32 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
119 |
17 25 26 118
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
120 |
32 1 3
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ≤ ( 𝑃 ∨ 𝑈 ) ) |
121 |
31 117 119 120
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ≤ ( 𝑃 ∨ 𝑈 ) ) |
122 |
8 121
|
eqbrtrid |
⊢ ( 𝜑 → 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) |
123 |
32 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
124 |
115 123
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
125 |
32 1 3
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ∧ 𝑄 ≤ 𝑊 ) ↔ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) ) ) |
126 |
31 124 117 39 125
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ∧ 𝑄 ≤ 𝑊 ) ↔ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) ) ) |
127 |
126
|
biimpd |
⊢ ( 𝜑 → ( ( 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ∧ 𝑄 ≤ 𝑊 ) → 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) ) ) |
128 |
122 127
|
mpand |
⊢ ( 𝜑 → ( 𝑄 ≤ 𝑊 → 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) ) ) |
129 |
128
|
imp |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) ) |
130 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
131 |
1 3 130 4 5
|
lhpmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
132 |
9 12 131
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
133 |
132
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑃 ∧ 𝑊 ) ∨ 𝑈 ) = ( ( 0. ‘ 𝐾 ) ∨ 𝑈 ) ) |
134 |
32 1 2 3 4
|
atmod4i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( ( 𝑃 ∧ 𝑊 ) ∨ 𝑈 ) = ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) ) |
135 |
17 21 44 39 30 134
|
syl131anc |
⊢ ( 𝜑 → ( ( 𝑃 ∧ 𝑊 ) ∨ 𝑈 ) = ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) ) |
136 |
32 2 130
|
olj02 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) → ( ( 0. ‘ 𝐾 ) ∨ 𝑈 ) = 𝑈 ) |
137 |
99 36 136
|
syl2anc |
⊢ ( 𝜑 → ( ( 0. ‘ 𝐾 ) ∨ 𝑈 ) = 𝑈 ) |
138 |
133 135 137
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) = 𝑈 ) |
139 |
138
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑊 ) = 𝑈 ) |
140 |
129 139
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → 𝑄 ≤ 𝑈 ) |
141 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
142 |
17 141
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ AtLat ) |
143 |
142
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → 𝐾 ∈ AtLat ) |
144 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → 𝑄 ∈ 𝐴 ) |
145 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → 𝑈 ∈ 𝐴 ) |
146 |
1 4
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑄 ≤ 𝑈 ↔ 𝑄 = 𝑈 ) ) |
147 |
143 144 145 146
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → ( 𝑄 ≤ 𝑈 ↔ 𝑄 = 𝑈 ) ) |
148 |
140 147
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → 𝑄 = 𝑈 ) |
149 |
32 1 3
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
150 |
31 117 119 149
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
151 |
8 150
|
eqbrtrid |
⊢ ( 𝜑 → 𝑄 ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
152 |
32 1 3
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∧ 𝑄 ≤ 𝑊 ) ↔ 𝑄 ≤ ( ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∧ 𝑊 ) ) ) |
153 |
31 124 119 39 152
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑄 ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∧ 𝑄 ≤ 𝑊 ) ↔ 𝑄 ≤ ( ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∧ 𝑊 ) ) ) |
154 |
153
|
biimpd |
⊢ ( 𝜑 → ( ( 𝑄 ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∧ 𝑄 ≤ 𝑊 ) → 𝑄 ≤ ( ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∧ 𝑊 ) ) ) |
155 |
151 154
|
mpand |
⊢ ( 𝜑 → ( 𝑄 ≤ 𝑊 → 𝑄 ≤ ( ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∧ 𝑊 ) ) ) |
156 |
155
|
imp |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → 𝑄 ≤ ( ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∧ 𝑊 ) ) |
157 |
1 3 130 4 5
|
lhpmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
158 |
9 24 157
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
159 |
158
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) ∨ 𝑉 ) = ( ( 0. ‘ 𝐾 ) ∨ 𝑉 ) ) |
160 |
32 4
|
atbase |
⊢ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 → ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
161 |
25 160
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
162 |
32 1 2 3 4
|
atmod4i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑉 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑉 ≤ 𝑊 ) → ( ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) ∨ 𝑉 ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∧ 𝑊 ) ) |
163 |
17 26 161 39 51 162
|
syl131anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) ∨ 𝑉 ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∧ 𝑊 ) ) |
164 |
32 2 130
|
olj02 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) → ( ( 0. ‘ 𝐾 ) ∨ 𝑉 ) = 𝑉 ) |
165 |
99 74 164
|
syl2anc |
⊢ ( 𝜑 → ( ( 0. ‘ 𝐾 ) ∨ 𝑉 ) = 𝑉 ) |
166 |
159 163 165
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∧ 𝑊 ) = 𝑉 ) |
167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∧ 𝑊 ) = 𝑉 ) |
168 |
156 167
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → 𝑄 ≤ 𝑉 ) |
169 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → 𝑉 ∈ 𝐴 ) |
170 |
1 4
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( 𝑄 ≤ 𝑉 ↔ 𝑄 = 𝑉 ) ) |
171 |
143 144 169 170
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → ( 𝑄 ≤ 𝑉 ↔ 𝑄 = 𝑉 ) ) |
172 |
168 171
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → 𝑄 = 𝑉 ) |
173 |
148 172
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑄 ≤ 𝑊 ) → 𝑈 = 𝑉 ) |
174 |
173
|
ex |
⊢ ( 𝜑 → ( 𝑄 ≤ 𝑊 → 𝑈 = 𝑉 ) ) |
175 |
174
|
necon3ad |
⊢ ( 𝜑 → ( 𝑈 ≠ 𝑉 → ¬ 𝑄 ≤ 𝑊 ) ) |
176 |
15 175
|
mpd |
⊢ ( 𝜑 → ¬ 𝑄 ≤ 𝑊 ) |
177 |
115 176
|
jca |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |