Step |
Hyp |
Ref |
Expression |
1 |
|
dia2dimlem2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
dia2dimlem2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
dia2dimlem2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
dia2dimlem2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dia2dimlem2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
dia2dimlem2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
dia2dimlem2.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dia2dimlem2.q |
⊢ 𝑄 = ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) |
9 |
|
dia2dimlem2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
dia2dimlem2.u |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) |
11 |
|
dia2dimlem2.v |
⊢ ( 𝜑 → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
12 |
|
dia2dimlem2.p |
⊢ ( 𝜑 → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
13 |
|
dia2dimlem2.f |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) |
14 |
|
dia2dimlem2.rf |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑈 ∨ 𝑉 ) ) |
15 |
|
dia2dimlem2.rv |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≠ 𝑉 ) |
16 |
|
dia2dimlem2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑇 ) |
17 |
|
dia2dimlem2.gv |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑃 ) = 𝑄 ) |
18 |
9
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
19 |
18
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
20 |
12
|
simpld |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
22 |
21 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
23 |
20 22
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
24 |
10
|
simpld |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
25 |
21 4
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
27 |
21 1 2
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) → 𝑈 ≤ ( 𝑃 ∨ 𝑈 ) ) |
28 |
19 23 26 27
|
syl3anc |
⊢ ( 𝜑 → 𝑈 ≤ ( 𝑃 ∨ 𝑈 ) ) |
29 |
21 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
30 |
18 20 24 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
31 |
21 1 3
|
latleeqm2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑈 ≤ ( 𝑃 ∨ 𝑈 ) ↔ ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑈 ) = 𝑈 ) ) |
32 |
19 26 30 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ≤ ( 𝑃 ∨ 𝑈 ) ↔ ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑈 ) = 𝑈 ) ) |
33 |
28 32
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑈 ) = 𝑈 ) |
34 |
1 4 5 6 7
|
trlat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
35 |
9 12 13 34
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
36 |
11
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ 𝐴 ) |
37 |
1 2 4
|
hlatexch2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ∧ ( 𝑅 ‘ 𝐹 ) ≠ 𝑉 ) → ( ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑈 ∨ 𝑉 ) → 𝑈 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑉 ) ) ) |
38 |
18 35 24 36 15 37
|
syl131anc |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑈 ∨ 𝑉 ) → 𝑈 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑉 ) ) ) |
39 |
14 38
|
mpd |
⊢ ( 𝜑 → 𝑈 ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑉 ) ) |
40 |
13
|
simpld |
⊢ ( 𝜑 → 𝐹 ∈ 𝑇 ) |
41 |
1 2 3 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
42 |
9 40 12 41
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
43 |
42
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑉 ) = ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ 𝑉 ) ) |
44 |
1 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
45 |
9 40 12 44
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
46 |
45
|
simpld |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
47 |
21 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
48 |
18 20 46 47
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
49 |
9
|
simprd |
⊢ ( 𝜑 → 𝑊 ∈ 𝐻 ) |
50 |
21 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
51 |
49 50
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
52 |
11
|
simprd |
⊢ ( 𝜑 → 𝑉 ≤ 𝑊 ) |
53 |
21 1 2 3 4
|
atmod4i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑉 ∈ 𝐴 ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑉 ≤ 𝑊 ) → ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ 𝑉 ) = ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑉 ) ∧ 𝑊 ) ) |
54 |
18 36 48 51 52 53
|
syl131anc |
⊢ ( 𝜑 → ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ 𝑉 ) = ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑉 ) ∧ 𝑊 ) ) |
55 |
2 4
|
hlatjass |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑉 ) = ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
56 |
18 20 46 36 55
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑉 ) = ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
57 |
56
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∨ 𝑉 ) ∧ 𝑊 ) = ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) |
58 |
54 57
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑊 ) ∨ 𝑉 ) = ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) |
59 |
43 58
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝐹 ) ∨ 𝑉 ) = ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) |
60 |
39 59
|
breqtrd |
⊢ ( 𝜑 → 𝑈 ≤ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) |
61 |
21 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
62 |
18 46 36 61
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
63 |
21 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∈ ( Base ‘ 𝐾 ) ) |
64 |
19 23 62 63
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∈ ( Base ‘ 𝐾 ) ) |
65 |
21 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
66 |
19 64 51 65
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
67 |
21 1 3
|
latmlem2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑈 ≤ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) → ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑈 ) ≤ ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) ) ) |
68 |
19 26 66 30 67
|
syl13anc |
⊢ ( 𝜑 → ( 𝑈 ≤ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) → ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑈 ) ≤ ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) ) ) |
69 |
60 68
|
mpd |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑈 ) ∧ 𝑈 ) ≤ ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) ) |
70 |
33 69
|
eqbrtrrd |
⊢ ( 𝜑 → 𝑈 ≤ ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) ) |
71 |
1 2 3 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐺 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
72 |
9 16 12 71
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐺 ) = ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) ) |
73 |
17 8
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑃 ) = ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) |
74 |
73
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) = ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) ) |
75 |
74
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) ∧ 𝑊 ) ) |
76 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑈 ) ) |
77 |
18 20 24 76
|
syl3anc |
⊢ ( 𝜑 → 𝑃 ≤ ( 𝑃 ∨ 𝑈 ) ) |
78 |
21 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑃 ≤ ( 𝑃 ∨ 𝑈 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) = ( ( 𝑃 ∨ 𝑈 ) ∧ ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) ) |
79 |
18 20 30 62 77 78
|
syl131anc |
⊢ ( 𝜑 → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) = ( ( 𝑃 ∨ 𝑈 ) ∧ ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) ) |
80 |
79
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) ∧ 𝑊 ) = ( ( ( 𝑃 ∨ 𝑈 ) ∧ ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) ∧ 𝑊 ) ) |
81 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
82 |
18 81
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ OL ) |
83 |
21 3
|
latmassOLD |
⊢ ( ( 𝐾 ∈ OL ∧ ( ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 ∨ 𝑈 ) ∧ ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) ) |
84 |
82 30 64 51 83
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝑃 ∨ 𝑈 ) ∧ ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) ) |
85 |
80 84
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) ) |
86 |
75 85
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑃 ∨ ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) ) |
87 |
72 86
|
eqtrd |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐺 ) = ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) ) |
88 |
87
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ ( ( 𝐹 ‘ 𝑃 ) ∨ 𝑉 ) ) ∧ 𝑊 ) ) = ( 𝑅 ‘ 𝐺 ) ) |
89 |
70 88
|
breqtrd |
⊢ ( 𝜑 → 𝑈 ≤ ( 𝑅 ‘ 𝐺 ) ) |
90 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
91 |
18 90
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ AtLat ) |
92 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
93 |
18 92
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ OP ) |
94 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
95 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
96 |
94 95 4
|
0ltat |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑈 ∈ 𝐴 ) → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑈 ) |
97 |
93 24 96
|
syl2anc |
⊢ ( 𝜑 → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑈 ) |
98 |
|
hlpos |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Poset ) |
99 |
18 98
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
100 |
21 94
|
op0cl |
⊢ ( 𝐾 ∈ OP → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
101 |
93 100
|
syl |
⊢ ( 𝜑 → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
102 |
21 5 6 7
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
103 |
9 16 102
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
104 |
21 1 95
|
pltletr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑈 ∧ 𝑈 ≤ ( 𝑅 ‘ 𝐺 ) ) → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) ) |
105 |
99 101 26 103 104
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝑈 ∧ 𝑈 ≤ ( 𝑅 ‘ 𝐺 ) ) → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) ) |
106 |
97 89 105
|
mp2and |
⊢ ( 𝜑 → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ) |
107 |
21 95 94
|
opltn0 |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ↔ ( 𝑅 ‘ 𝐺 ) ≠ ( 0. ‘ 𝐾 ) ) ) |
108 |
93 103 107
|
syl2anc |
⊢ ( 𝜑 → ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( 𝑅 ‘ 𝐺 ) ↔ ( 𝑅 ‘ 𝐺 ) ≠ ( 0. ‘ 𝐾 ) ) ) |
109 |
106 108
|
mpbid |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐺 ) ≠ ( 0. ‘ 𝐾 ) ) |
110 |
109
|
neneqd |
⊢ ( 𝜑 → ¬ ( 𝑅 ‘ 𝐺 ) = ( 0. ‘ 𝐾 ) ) |
111 |
94 4 5 6 7
|
trlator0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝐺 ) ∈ 𝐴 ∨ ( 𝑅 ‘ 𝐺 ) = ( 0. ‘ 𝐾 ) ) ) |
112 |
9 16 111
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝐺 ) ∈ 𝐴 ∨ ( 𝑅 ‘ 𝐺 ) = ( 0. ‘ 𝐾 ) ) ) |
113 |
112
|
orcomd |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝐺 ) = ( 0. ‘ 𝐾 ) ∨ ( 𝑅 ‘ 𝐺 ) ∈ 𝐴 ) ) |
114 |
113
|
ord |
⊢ ( 𝜑 → ( ¬ ( 𝑅 ‘ 𝐺 ) = ( 0. ‘ 𝐾 ) → ( 𝑅 ‘ 𝐺 ) ∈ 𝐴 ) ) |
115 |
110 114
|
mpd |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐺 ) ∈ 𝐴 ) |
116 |
1 4
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑈 ∈ 𝐴 ∧ ( 𝑅 ‘ 𝐺 ) ∈ 𝐴 ) → ( 𝑈 ≤ ( 𝑅 ‘ 𝐺 ) ↔ 𝑈 = ( 𝑅 ‘ 𝐺 ) ) ) |
117 |
91 24 115 116
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ≤ ( 𝑅 ‘ 𝐺 ) ↔ 𝑈 = ( 𝑅 ‘ 𝐺 ) ) ) |
118 |
89 117
|
mpbid |
⊢ ( 𝜑 → 𝑈 = ( 𝑅 ‘ 𝐺 ) ) |
119 |
118
|
eqcomd |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐺 ) = 𝑈 ) |