| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dia2dimlem2.l |
|- .<_ = ( le ` K ) |
| 2 |
|
dia2dimlem2.j |
|- .\/ = ( join ` K ) |
| 3 |
|
dia2dimlem2.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
dia2dimlem2.a |
|- A = ( Atoms ` K ) |
| 5 |
|
dia2dimlem2.h |
|- H = ( LHyp ` K ) |
| 6 |
|
dia2dimlem2.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 7 |
|
dia2dimlem2.r |
|- R = ( ( trL ` K ) ` W ) |
| 8 |
|
dia2dimlem2.q |
|- Q = ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) |
| 9 |
|
dia2dimlem2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
dia2dimlem2.u |
|- ( ph -> ( U e. A /\ U .<_ W ) ) |
| 11 |
|
dia2dimlem2.v |
|- ( ph -> ( V e. A /\ V .<_ W ) ) |
| 12 |
|
dia2dimlem2.p |
|- ( ph -> ( P e. A /\ -. P .<_ W ) ) |
| 13 |
|
dia2dimlem2.f |
|- ( ph -> ( F e. T /\ ( F ` P ) =/= P ) ) |
| 14 |
|
dia2dimlem2.rf |
|- ( ph -> ( R ` F ) .<_ ( U .\/ V ) ) |
| 15 |
|
dia2dimlem2.rv |
|- ( ph -> ( R ` F ) =/= V ) |
| 16 |
|
dia2dimlem2.g |
|- ( ph -> G e. T ) |
| 17 |
|
dia2dimlem2.gv |
|- ( ph -> ( G ` P ) = Q ) |
| 18 |
9
|
simpld |
|- ( ph -> K e. HL ) |
| 19 |
18
|
hllatd |
|- ( ph -> K e. Lat ) |
| 20 |
12
|
simpld |
|- ( ph -> P e. A ) |
| 21 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 22 |
21 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 23 |
20 22
|
syl |
|- ( ph -> P e. ( Base ` K ) ) |
| 24 |
10
|
simpld |
|- ( ph -> U e. A ) |
| 25 |
21 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
| 26 |
24 25
|
syl |
|- ( ph -> U e. ( Base ` K ) ) |
| 27 |
21 1 2
|
latlej2 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> U .<_ ( P .\/ U ) ) |
| 28 |
19 23 26 27
|
syl3anc |
|- ( ph -> U .<_ ( P .\/ U ) ) |
| 29 |
21 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ U e. A ) -> ( P .\/ U ) e. ( Base ` K ) ) |
| 30 |
18 20 24 29
|
syl3anc |
|- ( ph -> ( P .\/ U ) e. ( Base ` K ) ) |
| 31 |
21 1 3
|
latleeqm2 |
|- ( ( K e. Lat /\ U e. ( Base ` K ) /\ ( P .\/ U ) e. ( Base ` K ) ) -> ( U .<_ ( P .\/ U ) <-> ( ( P .\/ U ) ./\ U ) = U ) ) |
| 32 |
19 26 30 31
|
syl3anc |
|- ( ph -> ( U .<_ ( P .\/ U ) <-> ( ( P .\/ U ) ./\ U ) = U ) ) |
| 33 |
28 32
|
mpbid |
|- ( ph -> ( ( P .\/ U ) ./\ U ) = U ) |
| 34 |
1 4 5 6 7
|
trlat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) =/= P ) ) -> ( R ` F ) e. A ) |
| 35 |
9 12 13 34
|
syl3anc |
|- ( ph -> ( R ` F ) e. A ) |
| 36 |
11
|
simpld |
|- ( ph -> V e. A ) |
| 37 |
1 2 4
|
hlatexch2 |
|- ( ( K e. HL /\ ( ( R ` F ) e. A /\ U e. A /\ V e. A ) /\ ( R ` F ) =/= V ) -> ( ( R ` F ) .<_ ( U .\/ V ) -> U .<_ ( ( R ` F ) .\/ V ) ) ) |
| 38 |
18 35 24 36 15 37
|
syl131anc |
|- ( ph -> ( ( R ` F ) .<_ ( U .\/ V ) -> U .<_ ( ( R ` F ) .\/ V ) ) ) |
| 39 |
14 38
|
mpd |
|- ( ph -> U .<_ ( ( R ` F ) .\/ V ) ) |
| 40 |
13
|
simpld |
|- ( ph -> F e. T ) |
| 41 |
1 2 3 4 5 6 7
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) |
| 42 |
9 40 12 41
|
syl3anc |
|- ( ph -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) |
| 43 |
42
|
oveq1d |
|- ( ph -> ( ( R ` F ) .\/ V ) = ( ( ( P .\/ ( F ` P ) ) ./\ W ) .\/ V ) ) |
| 44 |
1 4 5 6
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
| 45 |
9 40 12 44
|
syl3anc |
|- ( ph -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
| 46 |
45
|
simpld |
|- ( ph -> ( F ` P ) e. A ) |
| 47 |
21 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ ( F ` P ) e. A ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
| 48 |
18 20 46 47
|
syl3anc |
|- ( ph -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
| 49 |
9
|
simprd |
|- ( ph -> W e. H ) |
| 50 |
21 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 51 |
49 50
|
syl |
|- ( ph -> W e. ( Base ` K ) ) |
| 52 |
11
|
simprd |
|- ( ph -> V .<_ W ) |
| 53 |
21 1 2 3 4
|
atmod4i1 |
|- ( ( K e. HL /\ ( V e. A /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ V .<_ W ) -> ( ( ( P .\/ ( F ` P ) ) ./\ W ) .\/ V ) = ( ( ( P .\/ ( F ` P ) ) .\/ V ) ./\ W ) ) |
| 54 |
18 36 48 51 52 53
|
syl131anc |
|- ( ph -> ( ( ( P .\/ ( F ` P ) ) ./\ W ) .\/ V ) = ( ( ( P .\/ ( F ` P ) ) .\/ V ) ./\ W ) ) |
| 55 |
2 4
|
hlatjass |
|- ( ( K e. HL /\ ( P e. A /\ ( F ` P ) e. A /\ V e. A ) ) -> ( ( P .\/ ( F ` P ) ) .\/ V ) = ( P .\/ ( ( F ` P ) .\/ V ) ) ) |
| 56 |
18 20 46 36 55
|
syl13anc |
|- ( ph -> ( ( P .\/ ( F ` P ) ) .\/ V ) = ( P .\/ ( ( F ` P ) .\/ V ) ) ) |
| 57 |
56
|
oveq1d |
|- ( ph -> ( ( ( P .\/ ( F ` P ) ) .\/ V ) ./\ W ) = ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) |
| 58 |
54 57
|
eqtrd |
|- ( ph -> ( ( ( P .\/ ( F ` P ) ) ./\ W ) .\/ V ) = ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) |
| 59 |
43 58
|
eqtrd |
|- ( ph -> ( ( R ` F ) .\/ V ) = ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) |
| 60 |
39 59
|
breqtrd |
|- ( ph -> U .<_ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) |
| 61 |
21 2 4
|
hlatjcl |
|- ( ( K e. HL /\ ( F ` P ) e. A /\ V e. A ) -> ( ( F ` P ) .\/ V ) e. ( Base ` K ) ) |
| 62 |
18 46 36 61
|
syl3anc |
|- ( ph -> ( ( F ` P ) .\/ V ) e. ( Base ` K ) ) |
| 63 |
21 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( ( F ` P ) .\/ V ) e. ( Base ` K ) ) -> ( P .\/ ( ( F ` P ) .\/ V ) ) e. ( Base ` K ) ) |
| 64 |
19 23 62 63
|
syl3anc |
|- ( ph -> ( P .\/ ( ( F ` P ) .\/ V ) ) e. ( Base ` K ) ) |
| 65 |
21 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ ( ( F ` P ) .\/ V ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) e. ( Base ` K ) ) |
| 66 |
19 64 51 65
|
syl3anc |
|- ( ph -> ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) e. ( Base ` K ) ) |
| 67 |
21 1 3
|
latmlem2 |
|- ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) e. ( Base ` K ) /\ ( P .\/ U ) e. ( Base ` K ) ) ) -> ( U .<_ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) -> ( ( P .\/ U ) ./\ U ) .<_ ( ( P .\/ U ) ./\ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) ) ) |
| 68 |
19 26 66 30 67
|
syl13anc |
|- ( ph -> ( U .<_ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) -> ( ( P .\/ U ) ./\ U ) .<_ ( ( P .\/ U ) ./\ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) ) ) |
| 69 |
60 68
|
mpd |
|- ( ph -> ( ( P .\/ U ) ./\ U ) .<_ ( ( P .\/ U ) ./\ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) ) |
| 70 |
33 69
|
eqbrtrrd |
|- ( ph -> U .<_ ( ( P .\/ U ) ./\ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) ) |
| 71 |
1 2 3 4 5 6 7
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ W ) ) |
| 72 |
9 16 12 71
|
syl3anc |
|- ( ph -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ W ) ) |
| 73 |
17 8
|
eqtrdi |
|- ( ph -> ( G ` P ) = ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) |
| 74 |
73
|
oveq2d |
|- ( ph -> ( P .\/ ( G ` P ) ) = ( P .\/ ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) ) |
| 75 |
74
|
oveq1d |
|- ( ph -> ( ( P .\/ ( G ` P ) ) ./\ W ) = ( ( P .\/ ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) ./\ W ) ) |
| 76 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ U e. A ) -> P .<_ ( P .\/ U ) ) |
| 77 |
18 20 24 76
|
syl3anc |
|- ( ph -> P .<_ ( P .\/ U ) ) |
| 78 |
21 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( P .\/ U ) e. ( Base ` K ) /\ ( ( F ` P ) .\/ V ) e. ( Base ` K ) ) /\ P .<_ ( P .\/ U ) ) -> ( P .\/ ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) = ( ( P .\/ U ) ./\ ( P .\/ ( ( F ` P ) .\/ V ) ) ) ) |
| 79 |
18 20 30 62 77 78
|
syl131anc |
|- ( ph -> ( P .\/ ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) = ( ( P .\/ U ) ./\ ( P .\/ ( ( F ` P ) .\/ V ) ) ) ) |
| 80 |
79
|
oveq1d |
|- ( ph -> ( ( P .\/ ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) ./\ W ) = ( ( ( P .\/ U ) ./\ ( P .\/ ( ( F ` P ) .\/ V ) ) ) ./\ W ) ) |
| 81 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 82 |
18 81
|
syl |
|- ( ph -> K e. OL ) |
| 83 |
21 3
|
latmassOLD |
|- ( ( K e. OL /\ ( ( P .\/ U ) e. ( Base ` K ) /\ ( P .\/ ( ( F ` P ) .\/ V ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( ( P .\/ U ) ./\ ( P .\/ ( ( F ` P ) .\/ V ) ) ) ./\ W ) = ( ( P .\/ U ) ./\ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) ) |
| 84 |
82 30 64 51 83
|
syl13anc |
|- ( ph -> ( ( ( P .\/ U ) ./\ ( P .\/ ( ( F ` P ) .\/ V ) ) ) ./\ W ) = ( ( P .\/ U ) ./\ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) ) |
| 85 |
80 84
|
eqtrd |
|- ( ph -> ( ( P .\/ ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) ) ./\ W ) = ( ( P .\/ U ) ./\ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) ) |
| 86 |
75 85
|
eqtrd |
|- ( ph -> ( ( P .\/ ( G ` P ) ) ./\ W ) = ( ( P .\/ U ) ./\ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) ) |
| 87 |
72 86
|
eqtrd |
|- ( ph -> ( R ` G ) = ( ( P .\/ U ) ./\ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) ) |
| 88 |
87
|
eqcomd |
|- ( ph -> ( ( P .\/ U ) ./\ ( ( P .\/ ( ( F ` P ) .\/ V ) ) ./\ W ) ) = ( R ` G ) ) |
| 89 |
70 88
|
breqtrd |
|- ( ph -> U .<_ ( R ` G ) ) |
| 90 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
| 91 |
18 90
|
syl |
|- ( ph -> K e. AtLat ) |
| 92 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 93 |
18 92
|
syl |
|- ( ph -> K e. OP ) |
| 94 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 95 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
| 96 |
94 95 4
|
0ltat |
|- ( ( K e. OP /\ U e. A ) -> ( 0. ` K ) ( lt ` K ) U ) |
| 97 |
93 24 96
|
syl2anc |
|- ( ph -> ( 0. ` K ) ( lt ` K ) U ) |
| 98 |
|
hlpos |
|- ( K e. HL -> K e. Poset ) |
| 99 |
18 98
|
syl |
|- ( ph -> K e. Poset ) |
| 100 |
21 94
|
op0cl |
|- ( K e. OP -> ( 0. ` K ) e. ( Base ` K ) ) |
| 101 |
93 100
|
syl |
|- ( ph -> ( 0. ` K ) e. ( Base ` K ) ) |
| 102 |
21 5 6 7
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) e. ( Base ` K ) ) |
| 103 |
9 16 102
|
syl2anc |
|- ( ph -> ( R ` G ) e. ( Base ` K ) ) |
| 104 |
21 1 95
|
pltletr |
|- ( ( K e. Poset /\ ( ( 0. ` K ) e. ( Base ` K ) /\ U e. ( Base ` K ) /\ ( R ` G ) e. ( Base ` K ) ) ) -> ( ( ( 0. ` K ) ( lt ` K ) U /\ U .<_ ( R ` G ) ) -> ( 0. ` K ) ( lt ` K ) ( R ` G ) ) ) |
| 105 |
99 101 26 103 104
|
syl13anc |
|- ( ph -> ( ( ( 0. ` K ) ( lt ` K ) U /\ U .<_ ( R ` G ) ) -> ( 0. ` K ) ( lt ` K ) ( R ` G ) ) ) |
| 106 |
97 89 105
|
mp2and |
|- ( ph -> ( 0. ` K ) ( lt ` K ) ( R ` G ) ) |
| 107 |
21 95 94
|
opltn0 |
|- ( ( K e. OP /\ ( R ` G ) e. ( Base ` K ) ) -> ( ( 0. ` K ) ( lt ` K ) ( R ` G ) <-> ( R ` G ) =/= ( 0. ` K ) ) ) |
| 108 |
93 103 107
|
syl2anc |
|- ( ph -> ( ( 0. ` K ) ( lt ` K ) ( R ` G ) <-> ( R ` G ) =/= ( 0. ` K ) ) ) |
| 109 |
106 108
|
mpbid |
|- ( ph -> ( R ` G ) =/= ( 0. ` K ) ) |
| 110 |
109
|
neneqd |
|- ( ph -> -. ( R ` G ) = ( 0. ` K ) ) |
| 111 |
94 4 5 6 7
|
trlator0 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( ( R ` G ) e. A \/ ( R ` G ) = ( 0. ` K ) ) ) |
| 112 |
9 16 111
|
syl2anc |
|- ( ph -> ( ( R ` G ) e. A \/ ( R ` G ) = ( 0. ` K ) ) ) |
| 113 |
112
|
orcomd |
|- ( ph -> ( ( R ` G ) = ( 0. ` K ) \/ ( R ` G ) e. A ) ) |
| 114 |
113
|
ord |
|- ( ph -> ( -. ( R ` G ) = ( 0. ` K ) -> ( R ` G ) e. A ) ) |
| 115 |
110 114
|
mpd |
|- ( ph -> ( R ` G ) e. A ) |
| 116 |
1 4
|
atcmp |
|- ( ( K e. AtLat /\ U e. A /\ ( R ` G ) e. A ) -> ( U .<_ ( R ` G ) <-> U = ( R ` G ) ) ) |
| 117 |
91 24 115 116
|
syl3anc |
|- ( ph -> ( U .<_ ( R ` G ) <-> U = ( R ` G ) ) ) |
| 118 |
89 117
|
mpbid |
|- ( ph -> U = ( R ` G ) ) |
| 119 |
118
|
eqcomd |
|- ( ph -> ( R ` G ) = U ) |