| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dia2dimlem1.l |
|- .<_ = ( le ` K ) |
| 2 |
|
dia2dimlem1.j |
|- .\/ = ( join ` K ) |
| 3 |
|
dia2dimlem1.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
dia2dimlem1.a |
|- A = ( Atoms ` K ) |
| 5 |
|
dia2dimlem1.h |
|- H = ( LHyp ` K ) |
| 6 |
|
dia2dimlem1.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 7 |
|
dia2dimlem1.r |
|- R = ( ( trL ` K ) ` W ) |
| 8 |
|
dia2dimlem1.q |
|- Q = ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) |
| 9 |
|
dia2dimlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
dia2dimlem1.u |
|- ( ph -> ( U e. A /\ U .<_ W ) ) |
| 11 |
|
dia2dimlem1.v |
|- ( ph -> ( V e. A /\ V .<_ W ) ) |
| 12 |
|
dia2dimlem1.p |
|- ( ph -> ( P e. A /\ -. P .<_ W ) ) |
| 13 |
|
dia2dimlem1.f |
|- ( ph -> ( F e. T /\ ( F ` P ) =/= P ) ) |
| 14 |
|
dia2dimlem1.rf |
|- ( ph -> ( R ` F ) .<_ ( U .\/ V ) ) |
| 15 |
|
dia2dimlem1.uv |
|- ( ph -> U =/= V ) |
| 16 |
|
dia2dimlem1.ru |
|- ( ph -> ( R ` F ) =/= U ) |
| 17 |
9
|
simpld |
|- ( ph -> K e. HL ) |
| 18 |
12
|
simpld |
|- ( ph -> P e. A ) |
| 19 |
1 4 5 6 7
|
trlat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) =/= P ) ) -> ( R ` F ) e. A ) |
| 20 |
9 12 13 19
|
syl3anc |
|- ( ph -> ( R ` F ) e. A ) |
| 21 |
10
|
simpld |
|- ( ph -> U e. A ) |
| 22 |
13
|
simpld |
|- ( ph -> F e. T ) |
| 23 |
1 4 5 6
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
| 24 |
9 22 12 23
|
syl3anc |
|- ( ph -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
| 25 |
24
|
simpld |
|- ( ph -> ( F ` P ) e. A ) |
| 26 |
11
|
simpld |
|- ( ph -> V e. A ) |
| 27 |
12
|
simprd |
|- ( ph -> -. P .<_ W ) |
| 28 |
1 5 6 7
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) .<_ W ) |
| 29 |
9 22 28
|
syl2anc |
|- ( ph -> ( R ` F ) .<_ W ) |
| 30 |
10
|
simprd |
|- ( ph -> U .<_ W ) |
| 31 |
17
|
hllatd |
|- ( ph -> K e. Lat ) |
| 32 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 33 |
32 4
|
atbase |
|- ( ( R ` F ) e. A -> ( R ` F ) e. ( Base ` K ) ) |
| 34 |
20 33
|
syl |
|- ( ph -> ( R ` F ) e. ( Base ` K ) ) |
| 35 |
32 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
| 36 |
21 35
|
syl |
|- ( ph -> U e. ( Base ` K ) ) |
| 37 |
9
|
simprd |
|- ( ph -> W e. H ) |
| 38 |
32 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 39 |
37 38
|
syl |
|- ( ph -> W e. ( Base ` K ) ) |
| 40 |
32 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( ( R ` F ) e. ( Base ` K ) /\ U e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( ( R ` F ) .<_ W /\ U .<_ W ) <-> ( ( R ` F ) .\/ U ) .<_ W ) ) |
| 41 |
31 34 36 39 40
|
syl13anc |
|- ( ph -> ( ( ( R ` F ) .<_ W /\ U .<_ W ) <-> ( ( R ` F ) .\/ U ) .<_ W ) ) |
| 42 |
29 30 41
|
mpbi2and |
|- ( ph -> ( ( R ` F ) .\/ U ) .<_ W ) |
| 43 |
32 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 44 |
18 43
|
syl |
|- ( ph -> P e. ( Base ` K ) ) |
| 45 |
32 2 4
|
hlatjcl |
|- ( ( K e. HL /\ ( R ` F ) e. A /\ U e. A ) -> ( ( R ` F ) .\/ U ) e. ( Base ` K ) ) |
| 46 |
17 20 21 45
|
syl3anc |
|- ( ph -> ( ( R ` F ) .\/ U ) e. ( Base ` K ) ) |
| 47 |
32 1
|
lattr |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ ( ( R ` F ) .\/ U ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( P .<_ ( ( R ` F ) .\/ U ) /\ ( ( R ` F ) .\/ U ) .<_ W ) -> P .<_ W ) ) |
| 48 |
31 44 46 39 47
|
syl13anc |
|- ( ph -> ( ( P .<_ ( ( R ` F ) .\/ U ) /\ ( ( R ` F ) .\/ U ) .<_ W ) -> P .<_ W ) ) |
| 49 |
42 48
|
mpan2d |
|- ( ph -> ( P .<_ ( ( R ` F ) .\/ U ) -> P .<_ W ) ) |
| 50 |
27 49
|
mtod |
|- ( ph -> -. P .<_ ( ( R ` F ) .\/ U ) ) |
| 51 |
11
|
simprd |
|- ( ph -> V .<_ W ) |
| 52 |
24
|
simprd |
|- ( ph -> -. ( F ` P ) .<_ W ) |
| 53 |
|
nbrne2 |
|- ( ( V .<_ W /\ -. ( F ` P ) .<_ W ) -> V =/= ( F ` P ) ) |
| 54 |
51 52 53
|
syl2anc |
|- ( ph -> V =/= ( F ` P ) ) |
| 55 |
54
|
necomd |
|- ( ph -> ( F ` P ) =/= V ) |
| 56 |
50 55
|
jca |
|- ( ph -> ( -. P .<_ ( ( R ` F ) .\/ U ) /\ ( F ` P ) =/= V ) ) |
| 57 |
31
|
adantr |
|- ( ( ph /\ ( P .\/ U ) = ( ( F ` P ) .\/ V ) ) -> K e. Lat ) |
| 58 |
44
|
adantr |
|- ( ( ph /\ ( P .\/ U ) = ( ( F ` P ) .\/ V ) ) -> P e. ( Base ` K ) ) |
| 59 |
32 2 4
|
hlatjcl |
|- ( ( K e. HL /\ V e. A /\ U e. A ) -> ( V .\/ U ) e. ( Base ` K ) ) |
| 60 |
17 26 21 59
|
syl3anc |
|- ( ph -> ( V .\/ U ) e. ( Base ` K ) ) |
| 61 |
60
|
adantr |
|- ( ( ph /\ ( P .\/ U ) = ( ( F ` P ) .\/ V ) ) -> ( V .\/ U ) e. ( Base ` K ) ) |
| 62 |
39
|
adantr |
|- ( ( ph /\ ( P .\/ U ) = ( ( F ` P ) .\/ V ) ) -> W e. ( Base ` K ) ) |
| 63 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ ( F ` P ) e. A /\ V e. A ) -> V .<_ ( ( F ` P ) .\/ V ) ) |
| 64 |
17 25 26 63
|
syl3anc |
|- ( ph -> V .<_ ( ( F ` P ) .\/ V ) ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ ( P .\/ U ) = ( ( F ` P ) .\/ V ) ) -> V .<_ ( ( F ` P ) .\/ V ) ) |
| 66 |
|
simpr |
|- ( ( ph /\ ( P .\/ U ) = ( ( F ` P ) .\/ V ) ) -> ( P .\/ U ) = ( ( F ` P ) .\/ V ) ) |
| 67 |
65 66
|
breqtrrd |
|- ( ( ph /\ ( P .\/ U ) = ( ( F ` P ) .\/ V ) ) -> V .<_ ( P .\/ U ) ) |
| 68 |
15
|
necomd |
|- ( ph -> V =/= U ) |
| 69 |
1 2 4
|
hlatexch2 |
|- ( ( K e. HL /\ ( V e. A /\ P e. A /\ U e. A ) /\ V =/= U ) -> ( V .<_ ( P .\/ U ) -> P .<_ ( V .\/ U ) ) ) |
| 70 |
17 26 18 21 68 69
|
syl131anc |
|- ( ph -> ( V .<_ ( P .\/ U ) -> P .<_ ( V .\/ U ) ) ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ ( P .\/ U ) = ( ( F ` P ) .\/ V ) ) -> ( V .<_ ( P .\/ U ) -> P .<_ ( V .\/ U ) ) ) |
| 72 |
67 71
|
mpd |
|- ( ( ph /\ ( P .\/ U ) = ( ( F ` P ) .\/ V ) ) -> P .<_ ( V .\/ U ) ) |
| 73 |
32 4
|
atbase |
|- ( V e. A -> V e. ( Base ` K ) ) |
| 74 |
26 73
|
syl |
|- ( ph -> V e. ( Base ` K ) ) |
| 75 |
32 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( V e. ( Base ` K ) /\ U e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( V .<_ W /\ U .<_ W ) <-> ( V .\/ U ) .<_ W ) ) |
| 76 |
31 74 36 39 75
|
syl13anc |
|- ( ph -> ( ( V .<_ W /\ U .<_ W ) <-> ( V .\/ U ) .<_ W ) ) |
| 77 |
51 30 76
|
mpbi2and |
|- ( ph -> ( V .\/ U ) .<_ W ) |
| 78 |
77
|
adantr |
|- ( ( ph /\ ( P .\/ U ) = ( ( F ` P ) .\/ V ) ) -> ( V .\/ U ) .<_ W ) |
| 79 |
32 1 57 58 61 62 72 78
|
lattrd |
|- ( ( ph /\ ( P .\/ U ) = ( ( F ` P ) .\/ V ) ) -> P .<_ W ) |
| 80 |
79
|
ex |
|- ( ph -> ( ( P .\/ U ) = ( ( F ` P ) .\/ V ) -> P .<_ W ) ) |
| 81 |
80
|
necon3bd |
|- ( ph -> ( -. P .<_ W -> ( P .\/ U ) =/= ( ( F ` P ) .\/ V ) ) ) |
| 82 |
27 81
|
mpd |
|- ( ph -> ( P .\/ U ) =/= ( ( F ` P ) .\/ V ) ) |
| 83 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ ( F ` P ) e. A ) -> ( F ` P ) .<_ ( P .\/ ( F ` P ) ) ) |
| 84 |
17 18 25 83
|
syl3anc |
|- ( ph -> ( F ` P ) .<_ ( P .\/ ( F ` P ) ) ) |
| 85 |
1 2 3 4 5 6 7
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) |
| 86 |
9 22 12 85
|
syl3anc |
|- ( ph -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) |
| 87 |
86
|
oveq2d |
|- ( ph -> ( P .\/ ( R ` F ) ) = ( P .\/ ( ( P .\/ ( F ` P ) ) ./\ W ) ) ) |
| 88 |
32 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ ( F ` P ) e. A ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
| 89 |
17 18 25 88
|
syl3anc |
|- ( ph -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
| 90 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ ( F ` P ) e. A ) -> P .<_ ( P .\/ ( F ` P ) ) ) |
| 91 |
17 18 25 90
|
syl3anc |
|- ( ph -> P .<_ ( P .\/ ( F ` P ) ) ) |
| 92 |
32 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ P .<_ ( P .\/ ( F ` P ) ) ) -> ( P .\/ ( ( P .\/ ( F ` P ) ) ./\ W ) ) = ( ( P .\/ ( F ` P ) ) ./\ ( P .\/ W ) ) ) |
| 93 |
17 18 89 39 91 92
|
syl131anc |
|- ( ph -> ( P .\/ ( ( P .\/ ( F ` P ) ) ./\ W ) ) = ( ( P .\/ ( F ` P ) ) ./\ ( P .\/ W ) ) ) |
| 94 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 95 |
1 2 94 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = ( 1. ` K ) ) |
| 96 |
9 12 95
|
syl2anc |
|- ( ph -> ( P .\/ W ) = ( 1. ` K ) ) |
| 97 |
96
|
oveq2d |
|- ( ph -> ( ( P .\/ ( F ` P ) ) ./\ ( P .\/ W ) ) = ( ( P .\/ ( F ` P ) ) ./\ ( 1. ` K ) ) ) |
| 98 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 99 |
17 98
|
syl |
|- ( ph -> K e. OL ) |
| 100 |
32 3 94
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) -> ( ( P .\/ ( F ` P ) ) ./\ ( 1. ` K ) ) = ( P .\/ ( F ` P ) ) ) |
| 101 |
99 89 100
|
syl2anc |
|- ( ph -> ( ( P .\/ ( F ` P ) ) ./\ ( 1. ` K ) ) = ( P .\/ ( F ` P ) ) ) |
| 102 |
97 101
|
eqtrd |
|- ( ph -> ( ( P .\/ ( F ` P ) ) ./\ ( P .\/ W ) ) = ( P .\/ ( F ` P ) ) ) |
| 103 |
93 102
|
eqtrd |
|- ( ph -> ( P .\/ ( ( P .\/ ( F ` P ) ) ./\ W ) ) = ( P .\/ ( F ` P ) ) ) |
| 104 |
87 103
|
eqtrd |
|- ( ph -> ( P .\/ ( R ` F ) ) = ( P .\/ ( F ` P ) ) ) |
| 105 |
84 104
|
breqtrrd |
|- ( ph -> ( F ` P ) .<_ ( P .\/ ( R ` F ) ) ) |
| 106 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ U e. A /\ V e. A ) -> ( U .\/ V ) = ( V .\/ U ) ) |
| 107 |
17 21 26 106
|
syl3anc |
|- ( ph -> ( U .\/ V ) = ( V .\/ U ) ) |
| 108 |
14 107
|
breqtrd |
|- ( ph -> ( R ` F ) .<_ ( V .\/ U ) ) |
| 109 |
1 2 4
|
hlatexch2 |
|- ( ( K e. HL /\ ( ( R ` F ) e. A /\ V e. A /\ U e. A ) /\ ( R ` F ) =/= U ) -> ( ( R ` F ) .<_ ( V .\/ U ) -> V .<_ ( ( R ` F ) .\/ U ) ) ) |
| 110 |
17 20 26 21 16 109
|
syl131anc |
|- ( ph -> ( ( R ` F ) .<_ ( V .\/ U ) -> V .<_ ( ( R ` F ) .\/ U ) ) ) |
| 111 |
108 110
|
mpd |
|- ( ph -> V .<_ ( ( R ` F ) .\/ U ) ) |
| 112 |
105 111
|
jca |
|- ( ph -> ( ( F ` P ) .<_ ( P .\/ ( R ` F ) ) /\ V .<_ ( ( R ` F ) .\/ U ) ) ) |
| 113 |
1 2 3 4
|
ps-2c |
|- ( ( ( K e. HL /\ P e. A /\ ( R ` F ) e. A ) /\ ( U e. A /\ ( F ` P ) e. A /\ V e. A ) /\ ( ( -. P .<_ ( ( R ` F ) .\/ U ) /\ ( F ` P ) =/= V ) /\ ( P .\/ U ) =/= ( ( F ` P ) .\/ V ) /\ ( ( F ` P ) .<_ ( P .\/ ( R ` F ) ) /\ V .<_ ( ( R ` F ) .\/ U ) ) ) ) -> ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) e. A ) |
| 114 |
17 18 20 21 25 26 56 82 112 113
|
syl333anc |
|- ( ph -> ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) e. A ) |
| 115 |
8 114
|
eqeltrid |
|- ( ph -> Q e. A ) |
| 116 |
32 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ U e. A ) -> ( P .\/ U ) e. ( Base ` K ) ) |
| 117 |
17 18 21 116
|
syl3anc |
|- ( ph -> ( P .\/ U ) e. ( Base ` K ) ) |
| 118 |
32 2 4
|
hlatjcl |
|- ( ( K e. HL /\ ( F ` P ) e. A /\ V e. A ) -> ( ( F ` P ) .\/ V ) e. ( Base ` K ) ) |
| 119 |
17 25 26 118
|
syl3anc |
|- ( ph -> ( ( F ` P ) .\/ V ) e. ( Base ` K ) ) |
| 120 |
32 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ U ) e. ( Base ` K ) /\ ( ( F ` P ) .\/ V ) e. ( Base ` K ) ) -> ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) .<_ ( P .\/ U ) ) |
| 121 |
31 117 119 120
|
syl3anc |
|- ( ph -> ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) .<_ ( P .\/ U ) ) |
| 122 |
8 121
|
eqbrtrid |
|- ( ph -> Q .<_ ( P .\/ U ) ) |
| 123 |
32 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 124 |
115 123
|
syl |
|- ( ph -> Q e. ( Base ` K ) ) |
| 125 |
32 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( P .\/ U ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( Q .<_ ( P .\/ U ) /\ Q .<_ W ) <-> Q .<_ ( ( P .\/ U ) ./\ W ) ) ) |
| 126 |
31 124 117 39 125
|
syl13anc |
|- ( ph -> ( ( Q .<_ ( P .\/ U ) /\ Q .<_ W ) <-> Q .<_ ( ( P .\/ U ) ./\ W ) ) ) |
| 127 |
126
|
biimpd |
|- ( ph -> ( ( Q .<_ ( P .\/ U ) /\ Q .<_ W ) -> Q .<_ ( ( P .\/ U ) ./\ W ) ) ) |
| 128 |
122 127
|
mpand |
|- ( ph -> ( Q .<_ W -> Q .<_ ( ( P .\/ U ) ./\ W ) ) ) |
| 129 |
128
|
imp |
|- ( ( ph /\ Q .<_ W ) -> Q .<_ ( ( P .\/ U ) ./\ W ) ) |
| 130 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 131 |
1 3 130 4 5
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P ./\ W ) = ( 0. ` K ) ) |
| 132 |
9 12 131
|
syl2anc |
|- ( ph -> ( P ./\ W ) = ( 0. ` K ) ) |
| 133 |
132
|
oveq1d |
|- ( ph -> ( ( P ./\ W ) .\/ U ) = ( ( 0. ` K ) .\/ U ) ) |
| 134 |
32 1 2 3 4
|
atmod4i1 |
|- ( ( K e. HL /\ ( U e. A /\ P e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ U .<_ W ) -> ( ( P ./\ W ) .\/ U ) = ( ( P .\/ U ) ./\ W ) ) |
| 135 |
17 21 44 39 30 134
|
syl131anc |
|- ( ph -> ( ( P ./\ W ) .\/ U ) = ( ( P .\/ U ) ./\ W ) ) |
| 136 |
32 2 130
|
olj02 |
|- ( ( K e. OL /\ U e. ( Base ` K ) ) -> ( ( 0. ` K ) .\/ U ) = U ) |
| 137 |
99 36 136
|
syl2anc |
|- ( ph -> ( ( 0. ` K ) .\/ U ) = U ) |
| 138 |
133 135 137
|
3eqtr3d |
|- ( ph -> ( ( P .\/ U ) ./\ W ) = U ) |
| 139 |
138
|
adantr |
|- ( ( ph /\ Q .<_ W ) -> ( ( P .\/ U ) ./\ W ) = U ) |
| 140 |
129 139
|
breqtrd |
|- ( ( ph /\ Q .<_ W ) -> Q .<_ U ) |
| 141 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
| 142 |
17 141
|
syl |
|- ( ph -> K e. AtLat ) |
| 143 |
142
|
adantr |
|- ( ( ph /\ Q .<_ W ) -> K e. AtLat ) |
| 144 |
115
|
adantr |
|- ( ( ph /\ Q .<_ W ) -> Q e. A ) |
| 145 |
21
|
adantr |
|- ( ( ph /\ Q .<_ W ) -> U e. A ) |
| 146 |
1 4
|
atcmp |
|- ( ( K e. AtLat /\ Q e. A /\ U e. A ) -> ( Q .<_ U <-> Q = U ) ) |
| 147 |
143 144 145 146
|
syl3anc |
|- ( ( ph /\ Q .<_ W ) -> ( Q .<_ U <-> Q = U ) ) |
| 148 |
140 147
|
mpbid |
|- ( ( ph /\ Q .<_ W ) -> Q = U ) |
| 149 |
32 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ U ) e. ( Base ` K ) /\ ( ( F ` P ) .\/ V ) e. ( Base ` K ) ) -> ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) .<_ ( ( F ` P ) .\/ V ) ) |
| 150 |
31 117 119 149
|
syl3anc |
|- ( ph -> ( ( P .\/ U ) ./\ ( ( F ` P ) .\/ V ) ) .<_ ( ( F ` P ) .\/ V ) ) |
| 151 |
8 150
|
eqbrtrid |
|- ( ph -> Q .<_ ( ( F ` P ) .\/ V ) ) |
| 152 |
32 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( ( F ` P ) .\/ V ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( Q .<_ ( ( F ` P ) .\/ V ) /\ Q .<_ W ) <-> Q .<_ ( ( ( F ` P ) .\/ V ) ./\ W ) ) ) |
| 153 |
31 124 119 39 152
|
syl13anc |
|- ( ph -> ( ( Q .<_ ( ( F ` P ) .\/ V ) /\ Q .<_ W ) <-> Q .<_ ( ( ( F ` P ) .\/ V ) ./\ W ) ) ) |
| 154 |
153
|
biimpd |
|- ( ph -> ( ( Q .<_ ( ( F ` P ) .\/ V ) /\ Q .<_ W ) -> Q .<_ ( ( ( F ` P ) .\/ V ) ./\ W ) ) ) |
| 155 |
151 154
|
mpand |
|- ( ph -> ( Q .<_ W -> Q .<_ ( ( ( F ` P ) .\/ V ) ./\ W ) ) ) |
| 156 |
155
|
imp |
|- ( ( ph /\ Q .<_ W ) -> Q .<_ ( ( ( F ` P ) .\/ V ) ./\ W ) ) |
| 157 |
1 3 130 4 5
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) -> ( ( F ` P ) ./\ W ) = ( 0. ` K ) ) |
| 158 |
9 24 157
|
syl2anc |
|- ( ph -> ( ( F ` P ) ./\ W ) = ( 0. ` K ) ) |
| 159 |
158
|
oveq1d |
|- ( ph -> ( ( ( F ` P ) ./\ W ) .\/ V ) = ( ( 0. ` K ) .\/ V ) ) |
| 160 |
32 4
|
atbase |
|- ( ( F ` P ) e. A -> ( F ` P ) e. ( Base ` K ) ) |
| 161 |
25 160
|
syl |
|- ( ph -> ( F ` P ) e. ( Base ` K ) ) |
| 162 |
32 1 2 3 4
|
atmod4i1 |
|- ( ( K e. HL /\ ( V e. A /\ ( F ` P ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ V .<_ W ) -> ( ( ( F ` P ) ./\ W ) .\/ V ) = ( ( ( F ` P ) .\/ V ) ./\ W ) ) |
| 163 |
17 26 161 39 51 162
|
syl131anc |
|- ( ph -> ( ( ( F ` P ) ./\ W ) .\/ V ) = ( ( ( F ` P ) .\/ V ) ./\ W ) ) |
| 164 |
32 2 130
|
olj02 |
|- ( ( K e. OL /\ V e. ( Base ` K ) ) -> ( ( 0. ` K ) .\/ V ) = V ) |
| 165 |
99 74 164
|
syl2anc |
|- ( ph -> ( ( 0. ` K ) .\/ V ) = V ) |
| 166 |
159 163 165
|
3eqtr3d |
|- ( ph -> ( ( ( F ` P ) .\/ V ) ./\ W ) = V ) |
| 167 |
166
|
adantr |
|- ( ( ph /\ Q .<_ W ) -> ( ( ( F ` P ) .\/ V ) ./\ W ) = V ) |
| 168 |
156 167
|
breqtrd |
|- ( ( ph /\ Q .<_ W ) -> Q .<_ V ) |
| 169 |
26
|
adantr |
|- ( ( ph /\ Q .<_ W ) -> V e. A ) |
| 170 |
1 4
|
atcmp |
|- ( ( K e. AtLat /\ Q e. A /\ V e. A ) -> ( Q .<_ V <-> Q = V ) ) |
| 171 |
143 144 169 170
|
syl3anc |
|- ( ( ph /\ Q .<_ W ) -> ( Q .<_ V <-> Q = V ) ) |
| 172 |
168 171
|
mpbid |
|- ( ( ph /\ Q .<_ W ) -> Q = V ) |
| 173 |
148 172
|
eqtr3d |
|- ( ( ph /\ Q .<_ W ) -> U = V ) |
| 174 |
173
|
ex |
|- ( ph -> ( Q .<_ W -> U = V ) ) |
| 175 |
174
|
necon3ad |
|- ( ph -> ( U =/= V -> -. Q .<_ W ) ) |
| 176 |
15 175
|
mpd |
|- ( ph -> -. Q .<_ W ) |
| 177 |
115 176
|
jca |
|- ( ph -> ( Q e. A /\ -. Q .<_ W ) ) |