Step |
Hyp |
Ref |
Expression |
1 |
|
dib11.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dib11.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dib11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dib11.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
eqss |
⊢ ( ( 𝐼 ‘ 𝑋 ) = ( 𝐼 ‘ 𝑌 ) ↔ ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( 𝐼 ‘ 𝑌 ) ⊆ ( 𝐼 ‘ 𝑋 ) ) ) |
6 |
1 2 3 4
|
dibord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ 𝑋 ≤ 𝑌 ) ) |
7 |
1 2 3 4
|
dibord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑌 ) ⊆ ( 𝐼 ‘ 𝑋 ) ↔ 𝑌 ≤ 𝑋 ) ) |
8 |
7
|
3com23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑌 ) ⊆ ( 𝐼 ‘ 𝑋 ) ↔ 𝑌 ≤ 𝑋 ) ) |
9 |
6 8
|
anbi12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( 𝐼 ‘ 𝑌 ) ⊆ ( 𝐼 ‘ 𝑋 ) ) ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ) ) |
10 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
11 |
10
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
12 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
13 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
14 |
1 2
|
latasymb |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
15 |
11 12 13 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
16 |
9 15
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝐼 ‘ 𝑌 ) ∧ ( 𝐼 ‘ 𝑌 ) ⊆ ( 𝐼 ‘ 𝑋 ) ) ↔ 𝑋 = 𝑌 ) ) |
17 |
5 16
|
syl5bb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) = ( 𝐼 ‘ 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |