Metamath Proof Explorer


Theorem dib11N

Description: The isomorphism B for a lattice K is one-to-one in the region under co-atom W . (Contributed by NM, 24-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dib11.b 𝐵 = ( Base ‘ 𝐾 )
dib11.l = ( le ‘ 𝐾 )
dib11.h 𝐻 = ( LHyp ‘ 𝐾 )
dib11.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
Assertion dib11N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( 𝐼𝑋 ) = ( 𝐼𝑌 ) ↔ 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 dib11.b 𝐵 = ( Base ‘ 𝐾 )
2 dib11.l = ( le ‘ 𝐾 )
3 dib11.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dib11.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
5 eqss ( ( 𝐼𝑋 ) = ( 𝐼𝑌 ) ↔ ( ( 𝐼𝑋 ) ⊆ ( 𝐼𝑌 ) ∧ ( 𝐼𝑌 ) ⊆ ( 𝐼𝑋 ) ) )
6 1 2 3 4 dibord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( 𝐼𝑋 ) ⊆ ( 𝐼𝑌 ) ↔ 𝑋 𝑌 ) )
7 1 2 3 4 dibord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( 𝐼𝑌 ) ⊆ ( 𝐼𝑋 ) ↔ 𝑌 𝑋 ) )
8 7 3com23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( 𝐼𝑌 ) ⊆ ( 𝐼𝑋 ) ↔ 𝑌 𝑋 ) )
9 6 8 anbi12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( ( 𝐼𝑋 ) ⊆ ( 𝐼𝑌 ) ∧ ( 𝐼𝑌 ) ⊆ ( 𝐼𝑋 ) ) ↔ ( 𝑋 𝑌𝑌 𝑋 ) ) )
10 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝐾 ∈ HL )
11 10 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝐾 ∈ Lat )
12 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝑋𝐵 )
13 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝑌𝐵 )
14 1 2 latasymb ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ 𝑋 = 𝑌 ) )
15 11 12 13 14 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ 𝑋 = 𝑌 ) )
16 9 15 bitrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( ( 𝐼𝑋 ) ⊆ ( 𝐼𝑌 ) ∧ ( 𝐼𝑌 ) ⊆ ( 𝐼𝑋 ) ) ↔ 𝑋 = 𝑌 ) )
17 5 16 syl5bb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( 𝐼𝑋 ) = ( 𝐼𝑌 ) ↔ 𝑋 = 𝑌 ) )