Metamath Proof Explorer


Theorem dib11N

Description: The isomorphism B for a lattice K is one-to-one in the region under co-atom W . (Contributed by NM, 24-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dib11.b B=BaseK
dib11.l ˙=K
dib11.h H=LHypK
dib11.i I=DIsoBKW
Assertion dib11N KHLWHXBX˙WYBY˙WIX=IYX=Y

Proof

Step Hyp Ref Expression
1 dib11.b B=BaseK
2 dib11.l ˙=K
3 dib11.h H=LHypK
4 dib11.i I=DIsoBKW
5 eqss IX=IYIXIYIYIX
6 1 2 3 4 dibord KHLWHXBX˙WYBY˙WIXIYX˙Y
7 1 2 3 4 dibord KHLWHYBY˙WXBX˙WIYIXY˙X
8 7 3com23 KHLWHXBX˙WYBY˙WIYIXY˙X
9 6 8 anbi12d KHLWHXBX˙WYBY˙WIXIYIYIXX˙YY˙X
10 simp1l KHLWHXBX˙WYBY˙WKHL
11 10 hllatd KHLWHXBX˙WYBY˙WKLat
12 simp2l KHLWHXBX˙WYBY˙WXB
13 simp3l KHLWHXBX˙WYBY˙WYB
14 1 2 latasymb KLatXBYBX˙YY˙XX=Y
15 11 12 13 14 syl3anc KHLWHXBX˙WYBY˙WX˙YY˙XX=Y
16 9 15 bitrd KHLWHXBX˙WYBY˙WIXIYIYIXX=Y
17 5 16 bitrid KHLWHXBX˙WYBY˙WIX=IYX=Y