Metamath Proof Explorer


Theorem dibclN

Description: Closure of partial isomorphism B for a lattice K . (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibcl.h 𝐻 = ( LHyp ‘ 𝐾 )
dibcl.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
Assertion dibclN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼𝑋 ) ∈ ran 𝐼 )

Proof

Step Hyp Ref Expression
1 dibcl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dibcl.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
3 eqid ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
4 1 3 2 dibfna ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 Fn dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) )
5 fnfun ( 𝐼 Fn dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) → Fun 𝐼 )
6 4 5 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → Fun 𝐼 )
7 fvelrn ( ( Fun 𝐼𝑋 ∈ dom 𝐼 ) → ( 𝐼𝑋 ) ∈ ran 𝐼 )
8 6 7 sylan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼𝑋 ) ∈ ran 𝐼 )