Description: Closure of partial isomorphism B for a lattice K . (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dibcl.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
dibcl.i | ⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) | ||
Assertion | dibclN | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibcl.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
2 | dibcl.i | ⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | eqid | ⊢ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) | |
4 | 1 3 2 | dibfna | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ) |
5 | fnfun | ⊢ ( 𝐼 Fn dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) → Fun 𝐼 ) | |
6 | 4 5 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Fun 𝐼 ) |
7 | fvelrn | ⊢ ( ( Fun 𝐼 ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) | |
8 | 6 7 | sylan | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) |