Metamath Proof Explorer


Theorem dibclN

Description: Closure of partial isomorphism B for a lattice K . (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibcl.h H = LHyp K
dibcl.i I = DIsoB K W
Assertion dibclN K HL W H X dom I I X ran I

Proof

Step Hyp Ref Expression
1 dibcl.h H = LHyp K
2 dibcl.i I = DIsoB K W
3 eqid DIsoA K W = DIsoA K W
4 1 3 2 dibfna K HL W H I Fn dom DIsoA K W
5 fnfun I Fn dom DIsoA K W Fun I
6 4 5 syl K HL W H Fun I
7 fvelrn Fun I X dom I I X ran I
8 6 7 sylan K HL W H X dom I I X ran I