Description: Closure of partial isomorphism B for a lattice K . (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dibcl.h | |- H = ( LHyp ` K ) |
|
dibcl.i | |- I = ( ( DIsoB ` K ) ` W ) |
||
Assertion | dibclN | |- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` X ) e. ran I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibcl.h | |- H = ( LHyp ` K ) |
|
2 | dibcl.i | |- I = ( ( DIsoB ` K ) ` W ) |
|
3 | eqid | |- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
|
4 | 1 3 2 | dibfna | |- ( ( K e. HL /\ W e. H ) -> I Fn dom ( ( DIsoA ` K ) ` W ) ) |
5 | fnfun | |- ( I Fn dom ( ( DIsoA ` K ) ` W ) -> Fun I ) |
|
6 | 4 5 | syl | |- ( ( K e. HL /\ W e. H ) -> Fun I ) |
7 | fvelrn | |- ( ( Fun I /\ X e. dom I ) -> ( I ` X ) e. ran I ) |
|
8 | 6 7 | sylan | |- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` X ) e. ran I ) |