Metamath Proof Explorer


Theorem dibclN

Description: Closure of partial isomorphism B for a lattice K . (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibcl.h
|- H = ( LHyp ` K )
dibcl.i
|- I = ( ( DIsoB ` K ) ` W )
Assertion dibclN
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` X ) e. ran I )

Proof

Step Hyp Ref Expression
1 dibcl.h
 |-  H = ( LHyp ` K )
2 dibcl.i
 |-  I = ( ( DIsoB ` K ) ` W )
3 eqid
 |-  ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W )
4 1 3 2 dibfna
 |-  ( ( K e. HL /\ W e. H ) -> I Fn dom ( ( DIsoA ` K ) ` W ) )
5 fnfun
 |-  ( I Fn dom ( ( DIsoA ` K ) ` W ) -> Fun I )
6 4 5 syl
 |-  ( ( K e. HL /\ W e. H ) -> Fun I )
7 fvelrn
 |-  ( ( Fun I /\ X e. dom I ) -> ( I ` X ) e. ran I )
8 6 7 sylan
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` X ) e. ran I )