Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
⊢ 2 ∈ ℤ |
2 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
3 |
1 2
|
mp1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( #b ‘ 𝑁 ) ) ) → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
4 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( #b ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
5 |
|
blennn |
⊢ ( 𝑁 ∈ ℕ → ( #b ‘ 𝑁 ) = ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ℤ≥ ‘ ( #b ‘ 𝑁 ) ) = ( ℤ≥ ‘ ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) ) |
7 |
6
|
eleq2d |
⊢ ( 𝑁 ∈ ℕ → ( 𝐾 ∈ ( ℤ≥ ‘ ( #b ‘ 𝑁 ) ) ↔ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) ) ) |
8 |
7
|
biimpa |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( #b ‘ 𝑁 ) ) ) → 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) ) |
9 |
|
dignnld |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) ) → ( 𝐾 ( digit ‘ 2 ) 𝑁 ) = 0 ) |
10 |
3 4 8 9
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( #b ‘ 𝑁 ) ) ) → ( 𝐾 ( digit ‘ 2 ) 𝑁 ) = 0 ) |