| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2nn |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℕ ) |
| 2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 𝐵 ∈ ℕ ) |
| 3 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
| 4 |
3
|
anim2i |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℝ+ ) ) |
| 5 |
|
relogbzcl |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℝ+ ) → ( 𝐵 logb 𝑁 ) ∈ ℝ ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → ( 𝐵 logb 𝑁 ) ∈ ℝ ) |
| 7 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 8 |
|
nnge1 |
⊢ ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 ) |
| 9 |
7 8
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℝ ∧ 1 ≤ 𝑁 ) ) |
| 10 |
|
1re |
⊢ 1 ∈ ℝ |
| 11 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( 𝑁 ∈ ( 1 [,) +∞ ) ↔ ( 𝑁 ∈ ℝ ∧ 1 ≤ 𝑁 ) ) ) |
| 12 |
10 11
|
ax-mp |
⊢ ( 𝑁 ∈ ( 1 [,) +∞ ) ↔ ( 𝑁 ∈ ℝ ∧ 1 ≤ 𝑁 ) ) |
| 13 |
9 12
|
sylibr |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( 1 [,) +∞ ) ) |
| 14 |
13
|
anim2i |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ( 1 [,) +∞ ) ) ) |
| 15 |
|
rege1logbzge0 |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ( 1 [,) +∞ ) ) → 0 ≤ ( 𝐵 logb 𝑁 ) ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → 0 ≤ ( 𝐵 logb 𝑁 ) ) |
| 17 |
6 16
|
jca |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → ( ( 𝐵 logb 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 𝐵 logb 𝑁 ) ) ) |
| 18 |
|
flge0nn0 |
⊢ ( ( ( 𝐵 logb 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 𝐵 logb 𝑁 ) ) → ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) ∈ ℕ0 ) |
| 19 |
|
peano2nn0 |
⊢ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ∈ ℕ0 ) |
| 20 |
17 18 19
|
3syl |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ∈ ℕ0 ) |
| 21 |
|
eluznn0 |
⊢ ( ( ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ∈ ℕ0 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 𝐾 ∈ ℕ0 ) |
| 22 |
20 21
|
stoic3 |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 𝐾 ∈ ℕ0 ) |
| 23 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 24 |
|
nn0rp0 |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( 0 [,) +∞ ) ) |
| 25 |
23 24
|
syl |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( 0 [,) +∞ ) ) |
| 26 |
25
|
3ad2ant2 |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 𝑁 ∈ ( 0 [,) +∞ ) ) |
| 27 |
|
nn0digval |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ( 0 [,) +∞ ) ) → ( 𝐾 ( digit ‘ 𝐵 ) 𝑁 ) = ( ( ⌊ ‘ ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ) mod 𝐵 ) ) |
| 28 |
2 22 26 27
|
syl3anc |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( 𝐾 ( digit ‘ 𝐵 ) 𝑁 ) = ( ( ⌊ ‘ ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ) mod 𝐵 ) ) |
| 29 |
7
|
3ad2ant2 |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 𝑁 ∈ ℝ ) |
| 30 |
|
eluzelre |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℝ ) |
| 31 |
30
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 𝐵 ∈ ℝ ) |
| 32 |
|
eluz2n0 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ≠ 0 ) |
| 33 |
32
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 𝐵 ≠ 0 ) |
| 34 |
|
eluzelz |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) → 𝐾 ∈ ℤ ) |
| 35 |
34
|
3ad2ant3 |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 36 |
31 33 35
|
reexpclzd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( 𝐵 ↑ 𝐾 ) ∈ ℝ ) |
| 37 |
|
eluzelcn |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℂ ) |
| 38 |
37
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 𝐵 ∈ ℂ ) |
| 39 |
38 33 35
|
expne0d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( 𝐵 ↑ 𝐾 ) ≠ 0 ) |
| 40 |
29 36 39
|
redivcld |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ∈ ℝ ) |
| 41 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
| 42 |
23 41
|
syl |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ 𝑁 ) |
| 43 |
42
|
3ad2ant2 |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 0 ≤ 𝑁 ) |
| 44 |
1
|
nngt0d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 0 < 𝐵 ) |
| 45 |
44
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 0 < 𝐵 ) |
| 46 |
|
expgt0 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐾 ∈ ℤ ∧ 0 < 𝐵 ) → 0 < ( 𝐵 ↑ 𝐾 ) ) |
| 47 |
31 35 45 46
|
syl3anc |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 0 < ( 𝐵 ↑ 𝐾 ) ) |
| 48 |
|
ge0div |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝐵 ↑ 𝐾 ) ∈ ℝ ∧ 0 < ( 𝐵 ↑ 𝐾 ) ) → ( 0 ≤ 𝑁 ↔ 0 ≤ ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ) ) |
| 49 |
29 36 47 48
|
syl3anc |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( 0 ≤ 𝑁 ↔ 0 ≤ ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ) ) |
| 50 |
43 49
|
mpbid |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 0 ≤ ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ) |
| 51 |
|
dignn0ldlem |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 𝑁 < ( 𝐵 ↑ 𝐾 ) ) |
| 52 |
1
|
nnrpd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℝ+ ) |
| 53 |
|
rpexpcl |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐾 ∈ ℤ ) → ( 𝐵 ↑ 𝐾 ) ∈ ℝ+ ) |
| 54 |
52 34 53
|
syl2an |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( 𝐵 ↑ 𝐾 ) ∈ ℝ+ ) |
| 55 |
54
|
3adant2 |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( 𝐵 ↑ 𝐾 ) ∈ ℝ+ ) |
| 56 |
|
divlt1lt |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝐵 ↑ 𝐾 ) ∈ ℝ+ ) → ( ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) < 1 ↔ 𝑁 < ( 𝐵 ↑ 𝐾 ) ) ) |
| 57 |
29 55 56
|
syl2anc |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) < 1 ↔ 𝑁 < ( 𝐵 ↑ 𝐾 ) ) ) |
| 58 |
51 57
|
mpbird |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) < 1 ) |
| 59 |
|
0re |
⊢ 0 ∈ ℝ |
| 60 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 61 |
59 60
|
pm3.2i |
⊢ ( 0 ∈ ℝ ∧ 1 ∈ ℝ* ) |
| 62 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ* ) → ( ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ∈ ( 0 [,) 1 ) ↔ ( ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ∧ ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) < 1 ) ) ) |
| 63 |
61 62
|
mp1i |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ∈ ( 0 [,) 1 ) ↔ ( ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ∧ ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) < 1 ) ) ) |
| 64 |
40 50 58 63
|
mpbir3and |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ∈ ( 0 [,) 1 ) ) |
| 65 |
|
ico01fl0 |
⊢ ( ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ∈ ( 0 [,) 1 ) → ( ⌊ ‘ ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ) = 0 ) |
| 66 |
64 65
|
syl |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( ⌊ ‘ ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ) = 0 ) |
| 67 |
66
|
oveq1d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝐵 ↑ 𝐾 ) ) ) mod 𝐵 ) = ( 0 mod 𝐵 ) ) |
| 68 |
52
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → 𝐵 ∈ ℝ+ ) |
| 69 |
|
0mod |
⊢ ( 𝐵 ∈ ℝ+ → ( 0 mod 𝐵 ) = 0 ) |
| 70 |
68 69
|
syl |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( 0 mod 𝐵 ) = 0 ) |
| 71 |
28 67 70
|
3eqtrd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 𝐵 logb 𝑁 ) ) + 1 ) ) ) → ( 𝐾 ( digit ‘ 𝐵 ) 𝑁 ) = 0 ) |