| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|- 2 e. ZZ |
| 2 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 3 |
1 2
|
mp1i |
|- ( ( N e. NN /\ K e. ( ZZ>= ` ( #b ` N ) ) ) -> 2 e. ( ZZ>= ` 2 ) ) |
| 4 |
|
simpl |
|- ( ( N e. NN /\ K e. ( ZZ>= ` ( #b ` N ) ) ) -> N e. NN ) |
| 5 |
|
blennn |
|- ( N e. NN -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
| 6 |
5
|
fveq2d |
|- ( N e. NN -> ( ZZ>= ` ( #b ` N ) ) = ( ZZ>= ` ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) |
| 7 |
6
|
eleq2d |
|- ( N e. NN -> ( K e. ( ZZ>= ` ( #b ` N ) ) <-> K e. ( ZZ>= ` ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) ) |
| 8 |
7
|
biimpa |
|- ( ( N e. NN /\ K e. ( ZZ>= ` ( #b ` N ) ) ) -> K e. ( ZZ>= ` ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) |
| 9 |
|
dignnld |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ N e. NN /\ K e. ( ZZ>= ` ( ( |_ ` ( 2 logb N ) ) + 1 ) ) ) -> ( K ( digit ` 2 ) N ) = 0 ) |
| 10 |
3 4 8 9
|
syl3anc |
|- ( ( N e. NN /\ K e. ( ZZ>= ` ( #b ` N ) ) ) -> ( K ( digit ` 2 ) N ) = 0 ) |