| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn |
|- 2 e. NN |
| 2 |
1
|
a1i |
|- ( N e. NN -> 2 e. NN ) |
| 3 |
|
blennnelnn |
|- ( N e. NN -> ( #b ` N ) e. NN ) |
| 4 |
|
nnm1nn0 |
|- ( ( #b ` N ) e. NN -> ( ( #b ` N ) - 1 ) e. NN0 ) |
| 5 |
3 4
|
syl |
|- ( N e. NN -> ( ( #b ` N ) - 1 ) e. NN0 ) |
| 6 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 7 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 8 |
7
|
nn0ge0d |
|- ( N e. NN -> 0 <_ N ) |
| 9 |
|
elrege0 |
|- ( N e. ( 0 [,) +oo ) <-> ( N e. RR /\ 0 <_ N ) ) |
| 10 |
6 8 9
|
sylanbrc |
|- ( N e. NN -> N e. ( 0 [,) +oo ) ) |
| 11 |
|
nn0digval |
|- ( ( 2 e. NN /\ ( ( #b ` N ) - 1 ) e. NN0 /\ N e. ( 0 [,) +oo ) ) -> ( ( ( #b ` N ) - 1 ) ( digit ` 2 ) N ) = ( ( |_ ` ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) ) mod 2 ) ) |
| 12 |
2 5 10 11
|
syl3anc |
|- ( N e. NN -> ( ( ( #b ` N ) - 1 ) ( digit ` 2 ) N ) = ( ( |_ ` ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) ) mod 2 ) ) |
| 13 |
|
n2dvds1 |
|- -. 2 || 1 |
| 14 |
|
blennn |
|- ( N e. NN -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
| 15 |
14
|
oveq1d |
|- ( N e. NN -> ( ( #b ` N ) - 1 ) = ( ( ( |_ ` ( 2 logb N ) ) + 1 ) - 1 ) ) |
| 16 |
|
2z |
|- 2 e. ZZ |
| 17 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 18 |
16 17
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
| 19 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 20 |
|
relogbzcl |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ N e. RR+ ) -> ( 2 logb N ) e. RR ) |
| 21 |
18 19 20
|
sylancr |
|- ( N e. NN -> ( 2 logb N ) e. RR ) |
| 22 |
21
|
flcld |
|- ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. ZZ ) |
| 23 |
22
|
zcnd |
|- ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. CC ) |
| 24 |
|
pncan1 |
|- ( ( |_ ` ( 2 logb N ) ) e. CC -> ( ( ( |_ ` ( 2 logb N ) ) + 1 ) - 1 ) = ( |_ ` ( 2 logb N ) ) ) |
| 25 |
23 24
|
syl |
|- ( N e. NN -> ( ( ( |_ ` ( 2 logb N ) ) + 1 ) - 1 ) = ( |_ ` ( 2 logb N ) ) ) |
| 26 |
15 25
|
eqtrd |
|- ( N e. NN -> ( ( #b ` N ) - 1 ) = ( |_ ` ( 2 logb N ) ) ) |
| 27 |
26
|
oveq2d |
|- ( N e. NN -> ( 2 ^ ( ( #b ` N ) - 1 ) ) = ( 2 ^ ( |_ ` ( 2 logb N ) ) ) ) |
| 28 |
27
|
oveq2d |
|- ( N e. NN -> ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) = ( N / ( 2 ^ ( |_ ` ( 2 logb N ) ) ) ) ) |
| 29 |
28
|
fveq2d |
|- ( N e. NN -> ( |_ ` ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) ) = ( |_ ` ( N / ( 2 ^ ( |_ ` ( 2 logb N ) ) ) ) ) ) |
| 30 |
|
fldivexpfllog2 |
|- ( N e. RR+ -> ( |_ ` ( N / ( 2 ^ ( |_ ` ( 2 logb N ) ) ) ) ) = 1 ) |
| 31 |
19 30
|
syl |
|- ( N e. NN -> ( |_ ` ( N / ( 2 ^ ( |_ ` ( 2 logb N ) ) ) ) ) = 1 ) |
| 32 |
29 31
|
eqtrd |
|- ( N e. NN -> ( |_ ` ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) ) = 1 ) |
| 33 |
32
|
breq2d |
|- ( N e. NN -> ( 2 || ( |_ ` ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) ) <-> 2 || 1 ) ) |
| 34 |
13 33
|
mtbiri |
|- ( N e. NN -> -. 2 || ( |_ ` ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) ) ) |
| 35 |
|
2re |
|- 2 e. RR |
| 36 |
35
|
a1i |
|- ( N e. NN -> 2 e. RR ) |
| 37 |
36 5
|
reexpcld |
|- ( N e. NN -> ( 2 ^ ( ( #b ` N ) - 1 ) ) e. RR ) |
| 38 |
|
2cnd |
|- ( N e. NN -> 2 e. CC ) |
| 39 |
|
2ne0 |
|- 2 =/= 0 |
| 40 |
39
|
a1i |
|- ( N e. NN -> 2 =/= 0 ) |
| 41 |
5
|
nn0zd |
|- ( N e. NN -> ( ( #b ` N ) - 1 ) e. ZZ ) |
| 42 |
38 40 41
|
expne0d |
|- ( N e. NN -> ( 2 ^ ( ( #b ` N ) - 1 ) ) =/= 0 ) |
| 43 |
6 37 42
|
redivcld |
|- ( N e. NN -> ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) e. RR ) |
| 44 |
43
|
flcld |
|- ( N e. NN -> ( |_ ` ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) ) e. ZZ ) |
| 45 |
|
mod2eq1n2dvds |
|- ( ( |_ ` ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) ) e. ZZ -> ( ( ( |_ ` ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) ) mod 2 ) = 1 <-> -. 2 || ( |_ ` ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) ) ) ) |
| 46 |
44 45
|
syl |
|- ( N e. NN -> ( ( ( |_ ` ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) ) mod 2 ) = 1 <-> -. 2 || ( |_ ` ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) ) ) ) |
| 47 |
34 46
|
mpbird |
|- ( N e. NN -> ( ( |_ ` ( N / ( 2 ^ ( ( #b ` N ) - 1 ) ) ) ) mod 2 ) = 1 ) |
| 48 |
12 47
|
eqtrd |
|- ( N e. NN -> ( ( ( #b ` N ) - 1 ) ( digit ` 2 ) N ) = 1 ) |