| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z |  |-  2 e. ZZ | 
						
							| 2 |  | uzid |  |-  ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) | 
						
							| 3 | 1 2 | mp1i |  |-  ( X e. RR+ -> 2 e. ( ZZ>= ` 2 ) ) | 
						
							| 4 |  | id |  |-  ( X e. RR+ -> X e. RR+ ) | 
						
							| 5 |  | eqid |  |-  ( |_ ` ( 2 logb X ) ) = ( |_ ` ( 2 logb X ) ) | 
						
							| 6 | 3 4 5 | fllogbd |  |-  ( X e. RR+ -> ( ( 2 ^ ( |_ ` ( 2 logb X ) ) ) <_ X /\ X < ( 2 ^ ( ( |_ ` ( 2 logb X ) ) + 1 ) ) ) ) | 
						
							| 7 |  | 2re |  |-  2 e. RR | 
						
							| 8 | 7 | a1i |  |-  ( X e. RR+ -> 2 e. RR ) | 
						
							| 9 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 10 | 9 | a1i |  |-  ( X e. RR+ -> 2 =/= 0 ) | 
						
							| 11 |  | relogbzcl |  |-  ( ( 2 e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( 2 logb X ) e. RR ) | 
						
							| 12 | 3 4 11 | syl2anc |  |-  ( X e. RR+ -> ( 2 logb X ) e. RR ) | 
						
							| 13 | 12 | flcld |  |-  ( X e. RR+ -> ( |_ ` ( 2 logb X ) ) e. ZZ ) | 
						
							| 14 | 8 10 13 | reexpclzd |  |-  ( X e. RR+ -> ( 2 ^ ( |_ ` ( 2 logb X ) ) ) e. RR ) | 
						
							| 15 |  | 2pos |  |-  0 < 2 | 
						
							| 16 | 15 | a1i |  |-  ( X e. RR+ -> 0 < 2 ) | 
						
							| 17 |  | expgt0 |  |-  ( ( 2 e. RR /\ ( |_ ` ( 2 logb X ) ) e. ZZ /\ 0 < 2 ) -> 0 < ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) | 
						
							| 18 | 8 13 16 17 | syl3anc |  |-  ( X e. RR+ -> 0 < ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) | 
						
							| 19 | 14 18 | elrpd |  |-  ( X e. RR+ -> ( 2 ^ ( |_ ` ( 2 logb X ) ) ) e. RR+ ) | 
						
							| 20 |  | rpre |  |-  ( X e. RR+ -> X e. RR ) | 
						
							| 21 |  | divge1b |  |-  ( ( ( 2 ^ ( |_ ` ( 2 logb X ) ) ) e. RR+ /\ X e. RR ) -> ( ( 2 ^ ( |_ ` ( 2 logb X ) ) ) <_ X <-> 1 <_ ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) ) ) | 
						
							| 22 | 21 | bicomd |  |-  ( ( ( 2 ^ ( |_ ` ( 2 logb X ) ) ) e. RR+ /\ X e. RR ) -> ( 1 <_ ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) <-> ( 2 ^ ( |_ ` ( 2 logb X ) ) ) <_ X ) ) | 
						
							| 23 | 19 20 22 | syl2anc |  |-  ( X e. RR+ -> ( 1 <_ ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) <-> ( 2 ^ ( |_ ` ( 2 logb X ) ) ) <_ X ) ) | 
						
							| 24 | 23 | biimprd |  |-  ( X e. RR+ -> ( ( 2 ^ ( |_ ` ( 2 logb X ) ) ) <_ X -> 1 <_ ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) ) ) | 
						
							| 25 |  | 2cnd |  |-  ( X e. RR+ -> 2 e. CC ) | 
						
							| 26 | 25 10 13 | expp1zd |  |-  ( X e. RR+ -> ( 2 ^ ( ( |_ ` ( 2 logb X ) ) + 1 ) ) = ( ( 2 ^ ( |_ ` ( 2 logb X ) ) ) x. 2 ) ) | 
						
							| 27 | 26 | breq2d |  |-  ( X e. RR+ -> ( X < ( 2 ^ ( ( |_ ` ( 2 logb X ) ) + 1 ) ) <-> X < ( ( 2 ^ ( |_ ` ( 2 logb X ) ) ) x. 2 ) ) ) | 
						
							| 28 |  | ltdivmul |  |-  ( ( X e. RR /\ 2 e. RR /\ ( ( 2 ^ ( |_ ` ( 2 logb X ) ) ) e. RR /\ 0 < ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) ) -> ( ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) < 2 <-> X < ( ( 2 ^ ( |_ ` ( 2 logb X ) ) ) x. 2 ) ) ) | 
						
							| 29 | 20 8 14 18 28 | syl112anc |  |-  ( X e. RR+ -> ( ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) < 2 <-> X < ( ( 2 ^ ( |_ ` ( 2 logb X ) ) ) x. 2 ) ) ) | 
						
							| 30 | 27 29 | bitr4d |  |-  ( X e. RR+ -> ( X < ( 2 ^ ( ( |_ ` ( 2 logb X ) ) + 1 ) ) <-> ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) < 2 ) ) | 
						
							| 31 | 30 | biimpd |  |-  ( X e. RR+ -> ( X < ( 2 ^ ( ( |_ ` ( 2 logb X ) ) + 1 ) ) -> ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) < 2 ) ) | 
						
							| 32 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 33 | 32 | breq2i |  |-  ( ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) < ( 1 + 1 ) <-> ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) < 2 ) | 
						
							| 34 | 31 33 | imbitrrdi |  |-  ( X e. RR+ -> ( X < ( 2 ^ ( ( |_ ` ( 2 logb X ) ) + 1 ) ) -> ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) < ( 1 + 1 ) ) ) | 
						
							| 35 | 24 34 | anim12d |  |-  ( X e. RR+ -> ( ( ( 2 ^ ( |_ ` ( 2 logb X ) ) ) <_ X /\ X < ( 2 ^ ( ( |_ ` ( 2 logb X ) ) + 1 ) ) ) -> ( 1 <_ ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) /\ ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) < ( 1 + 1 ) ) ) ) | 
						
							| 36 | 6 35 | mpd |  |-  ( X e. RR+ -> ( 1 <_ ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) /\ ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) < ( 1 + 1 ) ) ) | 
						
							| 37 | 25 10 13 | expne0d |  |-  ( X e. RR+ -> ( 2 ^ ( |_ ` ( 2 logb X ) ) ) =/= 0 ) | 
						
							| 38 | 20 14 37 | redivcld |  |-  ( X e. RR+ -> ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) e. RR ) | 
						
							| 39 |  | 1zzd |  |-  ( X e. RR+ -> 1 e. ZZ ) | 
						
							| 40 |  | flbi |  |-  ( ( ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) e. RR /\ 1 e. ZZ ) -> ( ( |_ ` ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) ) = 1 <-> ( 1 <_ ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) /\ ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) < ( 1 + 1 ) ) ) ) | 
						
							| 41 | 38 39 40 | syl2anc |  |-  ( X e. RR+ -> ( ( |_ ` ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) ) = 1 <-> ( 1 <_ ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) /\ ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) < ( 1 + 1 ) ) ) ) | 
						
							| 42 | 36 41 | mpbird |  |-  ( X e. RR+ -> ( |_ ` ( X / ( 2 ^ ( |_ ` ( 2 logb X ) ) ) ) ) = 1 ) |