Metamath Proof Explorer


Theorem fldivexpfllog2

Description: The floor of a positive real number divided by 2 to the power of the floor of the logarithm to base 2 of the number is 1. (Contributed by AV, 26-May-2020)

Ref Expression
Assertion fldivexpfllog2 ( 𝑋 ∈ ℝ+ → ( ⌊ ‘ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ) = 1 )

Proof

Step Hyp Ref Expression
1 2z 2 ∈ ℤ
2 uzid ( 2 ∈ ℤ → 2 ∈ ( ℤ ‘ 2 ) )
3 1 2 mp1i ( 𝑋 ∈ ℝ+ → 2 ∈ ( ℤ ‘ 2 ) )
4 id ( 𝑋 ∈ ℝ+𝑋 ∈ ℝ+ )
5 eqid ( ⌊ ‘ ( 2 logb 𝑋 ) ) = ( ⌊ ‘ ( 2 logb 𝑋 ) )
6 3 4 5 fllogbd ( 𝑋 ∈ ℝ+ → ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≤ 𝑋𝑋 < ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) ) )
7 2re 2 ∈ ℝ
8 7 a1i ( 𝑋 ∈ ℝ+ → 2 ∈ ℝ )
9 2ne0 2 ≠ 0
10 9 a1i ( 𝑋 ∈ ℝ+ → 2 ≠ 0 )
11 relogbzcl ( ( 2 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 2 logb 𝑋 ) ∈ ℝ )
12 3 4 11 syl2anc ( 𝑋 ∈ ℝ+ → ( 2 logb 𝑋 ) ∈ ℝ )
13 12 flcld ( 𝑋 ∈ ℝ+ → ( ⌊ ‘ ( 2 logb 𝑋 ) ) ∈ ℤ )
14 8 10 13 reexpclzd ( 𝑋 ∈ ℝ+ → ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ∈ ℝ )
15 2pos 0 < 2
16 15 a1i ( 𝑋 ∈ ℝ+ → 0 < 2 )
17 expgt0 ( ( 2 ∈ ℝ ∧ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ∈ ℤ ∧ 0 < 2 ) → 0 < ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) )
18 8 13 16 17 syl3anc ( 𝑋 ∈ ℝ+ → 0 < ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) )
19 14 18 elrpd ( 𝑋 ∈ ℝ+ → ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ∈ ℝ+ )
20 rpre ( 𝑋 ∈ ℝ+𝑋 ∈ ℝ )
21 divge1b ( ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ∈ ℝ+𝑋 ∈ ℝ ) → ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≤ 𝑋 ↔ 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ) )
22 21 bicomd ( ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ∈ ℝ+𝑋 ∈ ℝ ) → ( 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ↔ ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≤ 𝑋 ) )
23 19 20 22 syl2anc ( 𝑋 ∈ ℝ+ → ( 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ↔ ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≤ 𝑋 ) )
24 23 biimprd ( 𝑋 ∈ ℝ+ → ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≤ 𝑋 → 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ) )
25 2cnd ( 𝑋 ∈ ℝ+ → 2 ∈ ℂ )
26 25 10 13 expp1zd ( 𝑋 ∈ ℝ+ → ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) = ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) · 2 ) )
27 26 breq2d ( 𝑋 ∈ ℝ+ → ( 𝑋 < ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) ↔ 𝑋 < ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) · 2 ) ) )
28 ltdivmul ( ( 𝑋 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ∈ ℝ ∧ 0 < ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ) → ( ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < 2 ↔ 𝑋 < ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) · 2 ) ) )
29 20 8 14 18 28 syl112anc ( 𝑋 ∈ ℝ+ → ( ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < 2 ↔ 𝑋 < ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) · 2 ) ) )
30 27 29 bitr4d ( 𝑋 ∈ ℝ+ → ( 𝑋 < ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) ↔ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < 2 ) )
31 30 biimpd ( 𝑋 ∈ ℝ+ → ( 𝑋 < ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) → ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < 2 ) )
32 1p1e2 ( 1 + 1 ) = 2
33 32 breq2i ( ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < ( 1 + 1 ) ↔ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < 2 )
34 31 33 imbitrrdi ( 𝑋 ∈ ℝ+ → ( 𝑋 < ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) → ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < ( 1 + 1 ) ) )
35 24 34 anim12d ( 𝑋 ∈ ℝ+ → ( ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≤ 𝑋𝑋 < ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) ) → ( 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ∧ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < ( 1 + 1 ) ) ) )
36 6 35 mpd ( 𝑋 ∈ ℝ+ → ( 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ∧ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < ( 1 + 1 ) ) )
37 25 10 13 expne0d ( 𝑋 ∈ ℝ+ → ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≠ 0 )
38 20 14 37 redivcld ( 𝑋 ∈ ℝ+ → ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ∈ ℝ )
39 1zzd ( 𝑋 ∈ ℝ+ → 1 ∈ ℤ )
40 flbi ( ( ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ∈ ℝ ∧ 1 ∈ ℤ ) → ( ( ⌊ ‘ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ) = 1 ↔ ( 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ∧ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < ( 1 + 1 ) ) ) )
41 38 39 40 syl2anc ( 𝑋 ∈ ℝ+ → ( ( ⌊ ‘ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ) = 1 ↔ ( 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ∧ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < ( 1 + 1 ) ) ) )
42 36 41 mpbird ( 𝑋 ∈ ℝ+ → ( ⌊ ‘ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ) = 1 )