| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 2 |  | uzid | ⊢ ( 2  ∈  ℤ  →  2  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 3 | 1 2 | mp1i | ⊢ ( 𝑋  ∈  ℝ+  →  2  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 4 |  | id | ⊢ ( 𝑋  ∈  ℝ+  →  𝑋  ∈  ℝ+ ) | 
						
							| 5 |  | eqid | ⊢ ( ⌊ ‘ ( 2  logb  𝑋 ) )  =  ( ⌊ ‘ ( 2  logb  𝑋 ) ) | 
						
							| 6 | 3 4 5 | fllogbd | ⊢ ( 𝑋  ∈  ℝ+  →  ( ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ≤  𝑋  ∧  𝑋  <  ( 2 ↑ ( ( ⌊ ‘ ( 2  logb  𝑋 ) )  +  1 ) ) ) ) | 
						
							| 7 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑋  ∈  ℝ+  →  2  ∈  ℝ ) | 
						
							| 9 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑋  ∈  ℝ+  →  2  ≠  0 ) | 
						
							| 11 |  | relogbzcl | ⊢ ( ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( 2  logb  𝑋 )  ∈  ℝ ) | 
						
							| 12 | 3 4 11 | syl2anc | ⊢ ( 𝑋  ∈  ℝ+  →  ( 2  logb  𝑋 )  ∈  ℝ ) | 
						
							| 13 | 12 | flcld | ⊢ ( 𝑋  ∈  ℝ+  →  ( ⌊ ‘ ( 2  logb  𝑋 ) )  ∈  ℤ ) | 
						
							| 14 | 8 10 13 | reexpclzd | ⊢ ( 𝑋  ∈  ℝ+  →  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ∈  ℝ ) | 
						
							| 15 |  | 2pos | ⊢ 0  <  2 | 
						
							| 16 | 15 | a1i | ⊢ ( 𝑋  ∈  ℝ+  →  0  <  2 ) | 
						
							| 17 |  | expgt0 | ⊢ ( ( 2  ∈  ℝ  ∧  ( ⌊ ‘ ( 2  logb  𝑋 ) )  ∈  ℤ  ∧  0  <  2 )  →  0  <  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) ) | 
						
							| 18 | 8 13 16 17 | syl3anc | ⊢ ( 𝑋  ∈  ℝ+  →  0  <  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) ) | 
						
							| 19 | 14 18 | elrpd | ⊢ ( 𝑋  ∈  ℝ+  →  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ∈  ℝ+ ) | 
						
							| 20 |  | rpre | ⊢ ( 𝑋  ∈  ℝ+  →  𝑋  ∈  ℝ ) | 
						
							| 21 |  | divge1b | ⊢ ( ( ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ∈  ℝ+  ∧  𝑋  ∈  ℝ )  →  ( ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ≤  𝑋  ↔  1  ≤  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) ) ) ) | 
						
							| 22 | 21 | bicomd | ⊢ ( ( ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ∈  ℝ+  ∧  𝑋  ∈  ℝ )  →  ( 1  ≤  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  ↔  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ≤  𝑋 ) ) | 
						
							| 23 | 19 20 22 | syl2anc | ⊢ ( 𝑋  ∈  ℝ+  →  ( 1  ≤  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  ↔  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ≤  𝑋 ) ) | 
						
							| 24 | 23 | biimprd | ⊢ ( 𝑋  ∈  ℝ+  →  ( ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ≤  𝑋  →  1  ≤  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) ) ) ) | 
						
							| 25 |  | 2cnd | ⊢ ( 𝑋  ∈  ℝ+  →  2  ∈  ℂ ) | 
						
							| 26 | 25 10 13 | expp1zd | ⊢ ( 𝑋  ∈  ℝ+  →  ( 2 ↑ ( ( ⌊ ‘ ( 2  logb  𝑋 ) )  +  1 ) )  =  ( ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ·  2 ) ) | 
						
							| 27 | 26 | breq2d | ⊢ ( 𝑋  ∈  ℝ+  →  ( 𝑋  <  ( 2 ↑ ( ( ⌊ ‘ ( 2  logb  𝑋 ) )  +  1 ) )  ↔  𝑋  <  ( ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ·  2 ) ) ) | 
						
							| 28 |  | ltdivmul | ⊢ ( ( 𝑋  ∈  ℝ  ∧  2  ∈  ℝ  ∧  ( ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ∈  ℝ  ∧  0  <  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) ) )  →  ( ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  <  2  ↔  𝑋  <  ( ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ·  2 ) ) ) | 
						
							| 29 | 20 8 14 18 28 | syl112anc | ⊢ ( 𝑋  ∈  ℝ+  →  ( ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  <  2  ↔  𝑋  <  ( ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ·  2 ) ) ) | 
						
							| 30 | 27 29 | bitr4d | ⊢ ( 𝑋  ∈  ℝ+  →  ( 𝑋  <  ( 2 ↑ ( ( ⌊ ‘ ( 2  logb  𝑋 ) )  +  1 ) )  ↔  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  <  2 ) ) | 
						
							| 31 | 30 | biimpd | ⊢ ( 𝑋  ∈  ℝ+  →  ( 𝑋  <  ( 2 ↑ ( ( ⌊ ‘ ( 2  logb  𝑋 ) )  +  1 ) )  →  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  <  2 ) ) | 
						
							| 32 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 33 | 32 | breq2i | ⊢ ( ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  <  ( 1  +  1 )  ↔  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  <  2 ) | 
						
							| 34 | 31 33 | imbitrrdi | ⊢ ( 𝑋  ∈  ℝ+  →  ( 𝑋  <  ( 2 ↑ ( ( ⌊ ‘ ( 2  logb  𝑋 ) )  +  1 ) )  →  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  <  ( 1  +  1 ) ) ) | 
						
							| 35 | 24 34 | anim12d | ⊢ ( 𝑋  ∈  ℝ+  →  ( ( ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ≤  𝑋  ∧  𝑋  <  ( 2 ↑ ( ( ⌊ ‘ ( 2  logb  𝑋 ) )  +  1 ) ) )  →  ( 1  ≤  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  ∧  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  <  ( 1  +  1 ) ) ) ) | 
						
							| 36 | 6 35 | mpd | ⊢ ( 𝑋  ∈  ℝ+  →  ( 1  ≤  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  ∧  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  <  ( 1  +  1 ) ) ) | 
						
							| 37 | 25 10 13 | expne0d | ⊢ ( 𝑋  ∈  ℝ+  →  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) )  ≠  0 ) | 
						
							| 38 | 20 14 37 | redivcld | ⊢ ( 𝑋  ∈  ℝ+  →  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  ∈  ℝ ) | 
						
							| 39 |  | 1zzd | ⊢ ( 𝑋  ∈  ℝ+  →  1  ∈  ℤ ) | 
						
							| 40 |  | flbi | ⊢ ( ( ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  ∈  ℝ  ∧  1  ∈  ℤ )  →  ( ( ⌊ ‘ ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) ) )  =  1  ↔  ( 1  ≤  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  ∧  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  <  ( 1  +  1 ) ) ) ) | 
						
							| 41 | 38 39 40 | syl2anc | ⊢ ( 𝑋  ∈  ℝ+  →  ( ( ⌊ ‘ ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) ) )  =  1  ↔  ( 1  ≤  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  ∧  ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) )  <  ( 1  +  1 ) ) ) ) | 
						
							| 42 | 36 41 | mpbird | ⊢ ( 𝑋  ∈  ℝ+  →  ( ⌊ ‘ ( 𝑋  /  ( 2 ↑ ( ⌊ ‘ ( 2  logb  𝑋 ) ) ) ) )  =  1 ) |