Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
⊢ 2 ∈ ℤ |
2 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
3 |
1 2
|
mp1i |
⊢ ( 𝑋 ∈ ℝ+ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
4 |
|
id |
⊢ ( 𝑋 ∈ ℝ+ → 𝑋 ∈ ℝ+ ) |
5 |
|
eqid |
⊢ ( ⌊ ‘ ( 2 logb 𝑋 ) ) = ( ⌊ ‘ ( 2 logb 𝑋 ) ) |
6 |
3 4 5
|
fllogbd |
⊢ ( 𝑋 ∈ ℝ+ → ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≤ 𝑋 ∧ 𝑋 < ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) ) ) |
7 |
|
2re |
⊢ 2 ∈ ℝ |
8 |
7
|
a1i |
⊢ ( 𝑋 ∈ ℝ+ → 2 ∈ ℝ ) |
9 |
|
2ne0 |
⊢ 2 ≠ 0 |
10 |
9
|
a1i |
⊢ ( 𝑋 ∈ ℝ+ → 2 ≠ 0 ) |
11 |
|
relogbzcl |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 2 logb 𝑋 ) ∈ ℝ ) |
12 |
3 4 11
|
syl2anc |
⊢ ( 𝑋 ∈ ℝ+ → ( 2 logb 𝑋 ) ∈ ℝ ) |
13 |
12
|
flcld |
⊢ ( 𝑋 ∈ ℝ+ → ( ⌊ ‘ ( 2 logb 𝑋 ) ) ∈ ℤ ) |
14 |
8 10 13
|
reexpclzd |
⊢ ( 𝑋 ∈ ℝ+ → ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ∈ ℝ ) |
15 |
|
2pos |
⊢ 0 < 2 |
16 |
15
|
a1i |
⊢ ( 𝑋 ∈ ℝ+ → 0 < 2 ) |
17 |
|
expgt0 |
⊢ ( ( 2 ∈ ℝ ∧ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ∈ ℤ ∧ 0 < 2 ) → 0 < ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) |
18 |
8 13 16 17
|
syl3anc |
⊢ ( 𝑋 ∈ ℝ+ → 0 < ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) |
19 |
14 18
|
elrpd |
⊢ ( 𝑋 ∈ ℝ+ → ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ∈ ℝ+ ) |
20 |
|
rpre |
⊢ ( 𝑋 ∈ ℝ+ → 𝑋 ∈ ℝ ) |
21 |
|
divge1b |
⊢ ( ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ∈ ℝ+ ∧ 𝑋 ∈ ℝ ) → ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≤ 𝑋 ↔ 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ) ) |
22 |
21
|
bicomd |
⊢ ( ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ∈ ℝ+ ∧ 𝑋 ∈ ℝ ) → ( 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ↔ ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≤ 𝑋 ) ) |
23 |
19 20 22
|
syl2anc |
⊢ ( 𝑋 ∈ ℝ+ → ( 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ↔ ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≤ 𝑋 ) ) |
24 |
23
|
biimprd |
⊢ ( 𝑋 ∈ ℝ+ → ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≤ 𝑋 → 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ) ) |
25 |
|
2cnd |
⊢ ( 𝑋 ∈ ℝ+ → 2 ∈ ℂ ) |
26 |
25 10 13
|
expp1zd |
⊢ ( 𝑋 ∈ ℝ+ → ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) = ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) · 2 ) ) |
27 |
26
|
breq2d |
⊢ ( 𝑋 ∈ ℝ+ → ( 𝑋 < ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) ↔ 𝑋 < ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) · 2 ) ) ) |
28 |
|
ltdivmul |
⊢ ( ( 𝑋 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ∈ ℝ ∧ 0 < ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ) → ( ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < 2 ↔ 𝑋 < ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) · 2 ) ) ) |
29 |
20 8 14 18 28
|
syl112anc |
⊢ ( 𝑋 ∈ ℝ+ → ( ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < 2 ↔ 𝑋 < ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) · 2 ) ) ) |
30 |
27 29
|
bitr4d |
⊢ ( 𝑋 ∈ ℝ+ → ( 𝑋 < ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) ↔ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < 2 ) ) |
31 |
30
|
biimpd |
⊢ ( 𝑋 ∈ ℝ+ → ( 𝑋 < ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) → ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < 2 ) ) |
32 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
33 |
32
|
breq2i |
⊢ ( ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < ( 1 + 1 ) ↔ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < 2 ) |
34 |
31 33
|
imbitrrdi |
⊢ ( 𝑋 ∈ ℝ+ → ( 𝑋 < ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) → ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < ( 1 + 1 ) ) ) |
35 |
24 34
|
anim12d |
⊢ ( 𝑋 ∈ ℝ+ → ( ( ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≤ 𝑋 ∧ 𝑋 < ( 2 ↑ ( ( ⌊ ‘ ( 2 logb 𝑋 ) ) + 1 ) ) ) → ( 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ∧ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < ( 1 + 1 ) ) ) ) |
36 |
6 35
|
mpd |
⊢ ( 𝑋 ∈ ℝ+ → ( 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ∧ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < ( 1 + 1 ) ) ) |
37 |
25 10 13
|
expne0d |
⊢ ( 𝑋 ∈ ℝ+ → ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ≠ 0 ) |
38 |
20 14 37
|
redivcld |
⊢ ( 𝑋 ∈ ℝ+ → ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ∈ ℝ ) |
39 |
|
1zzd |
⊢ ( 𝑋 ∈ ℝ+ → 1 ∈ ℤ ) |
40 |
|
flbi |
⊢ ( ( ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ∈ ℝ ∧ 1 ∈ ℤ ) → ( ( ⌊ ‘ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ) = 1 ↔ ( 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ∧ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < ( 1 + 1 ) ) ) ) |
41 |
38 39 40
|
syl2anc |
⊢ ( 𝑋 ∈ ℝ+ → ( ( ⌊ ‘ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ) = 1 ↔ ( 1 ≤ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ∧ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) < ( 1 + 1 ) ) ) ) |
42 |
36 41
|
mpbird |
⊢ ( 𝑋 ∈ ℝ+ → ( ⌊ ‘ ( 𝑋 / ( 2 ↑ ( ⌊ ‘ ( 2 logb 𝑋 ) ) ) ) ) = 1 ) |