Metamath Proof Explorer


Theorem fldivexpfllog2

Description: The floor of a positive real number divided by 2 to the power of the floor of the logarithm to base 2 of the number is 1. (Contributed by AV, 26-May-2020)

Ref Expression
Assertion fldivexpfllog2 X+X2log2X=1

Proof

Step Hyp Ref Expression
1 2z 2
2 uzid 222
3 1 2 mp1i X+22
4 id X+X+
5 eqid log2X=log2X
6 3 4 5 fllogbd X+2log2XXX<2log2X+1
7 2re 2
8 7 a1i X+2
9 2ne0 20
10 9 a1i X+20
11 relogbzcl 22X+log2X
12 3 4 11 syl2anc X+log2X
13 12 flcld X+log2X
14 8 10 13 reexpclzd X+2log2X
15 2pos 0<2
16 15 a1i X+0<2
17 expgt0 2log2X0<20<2log2X
18 8 13 16 17 syl3anc X+0<2log2X
19 14 18 elrpd X+2log2X+
20 rpre X+X
21 divge1b 2log2X+X2log2XX1X2log2X
22 21 bicomd 2log2X+X1X2log2X2log2XX
23 19 20 22 syl2anc X+1X2log2X2log2XX
24 23 biimprd X+2log2XX1X2log2X
25 2cnd X+2
26 25 10 13 expp1zd X+2log2X+1=2log2X2
27 26 breq2d X+X<2log2X+1X<2log2X2
28 ltdivmul X22log2X0<2log2XX2log2X<2X<2log2X2
29 20 8 14 18 28 syl112anc X+X2log2X<2X<2log2X2
30 27 29 bitr4d X+X<2log2X+1X2log2X<2
31 30 biimpd X+X<2log2X+1X2log2X<2
32 1p1e2 1+1=2
33 32 breq2i X2log2X<1+1X2log2X<2
34 31 33 imbitrrdi X+X<2log2X+1X2log2X<1+1
35 24 34 anim12d X+2log2XXX<2log2X+11X2log2XX2log2X<1+1
36 6 35 mpd X+1X2log2XX2log2X<1+1
37 25 10 13 expne0d X+2log2X0
38 20 14 37 redivcld X+X2log2X
39 1zzd X+1
40 flbi X2log2X1X2log2X=11X2log2XX2log2X<1+1
41 38 39 40 syl2anc X+X2log2X=11X2log2XX2log2X<1+1
42 36 41 mpbird X+X2log2X=1