Step |
Hyp |
Ref |
Expression |
1 |
|
ipsubdir.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
ipsubdir.3 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
3 |
|
ipsubdir.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
4 |
|
id |
⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
5 |
4
|
3com13 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
6 |
|
id |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
7 |
6
|
3com12 |
⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
8 |
1 2 3
|
dipsubdir |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐵 𝑀 𝐶 ) 𝑃 𝐴 ) = ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) |
9 |
7 8
|
sylan2 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐵 𝑀 𝐶 ) 𝑃 𝐴 ) = ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) |
10 |
9
|
fveq2d |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑀 𝐶 ) 𝑃 𝐴 ) ) = ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) ) |
11 |
|
phnv |
⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |
12 |
|
simpl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝑈 ∈ NrmCVec ) |
13 |
1 2
|
nvmcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝑀 𝐶 ) ∈ 𝑋 ) |
14 |
13
|
3com23 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝑀 𝐶 ) ∈ 𝑋 ) |
15 |
14
|
3adant3r3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐵 𝑀 𝐶 ) ∈ 𝑋 ) |
16 |
|
simpr3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
17 |
1 3
|
dipcj |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐵 𝑀 𝐶 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( ( 𝐵 𝑀 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝑀 𝐶 ) ) ) |
18 |
12 15 16 17
|
syl3anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑀 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝑀 𝐶 ) ) ) |
19 |
11 18
|
sylan |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑀 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝑀 𝐶 ) ) ) |
20 |
1 3
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝑃 𝐴 ) ∈ ℂ ) |
21 |
20
|
3adant3r1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐵 𝑃 𝐴 ) ∈ ℂ ) |
22 |
1 3
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐶 𝑃 𝐴 ) ∈ ℂ ) |
23 |
22
|
3adant3r2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐶 𝑃 𝐴 ) ∈ ℂ ) |
24 |
|
cjsub |
⊢ ( ( ( 𝐵 𝑃 𝐴 ) ∈ ℂ ∧ ( 𝐶 𝑃 𝐴 ) ∈ ℂ ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) − ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) ) ) |
25 |
21 23 24
|
syl2anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) − ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) ) ) |
26 |
1 3
|
dipcj |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
27 |
26
|
3adant3r1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
28 |
1 3
|
dipcj |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐶 ) ) |
29 |
28
|
3adant3r2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐶 ) ) |
30 |
27 29
|
oveq12d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) − ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐵 ) − ( 𝐴 𝑃 𝐶 ) ) ) |
31 |
25 30
|
eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐵 ) − ( 𝐴 𝑃 𝐶 ) ) ) |
32 |
11 31
|
sylan |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐵 ) − ( 𝐴 𝑃 𝐶 ) ) ) |
33 |
10 19 32
|
3eqtr3d |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( 𝐵 𝑀 𝐶 ) ) = ( ( 𝐴 𝑃 𝐵 ) − ( 𝐴 𝑃 𝐶 ) ) ) |
34 |
5 33
|
sylan2 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( 𝐵 𝑀 𝐶 ) ) = ( ( 𝐴 𝑃 𝐵 ) − ( 𝐴 𝑃 𝐶 ) ) ) |