| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjrel |
⊢ ( Disj 𝑅 → Rel 𝑅 ) |
| 2 |
|
releldmqs |
⊢ ( 𝑣 ∈ V → ( Rel 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) ) ) |
| 3 |
2
|
elv |
⊢ ( Rel 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) ) |
| 4 |
1 3
|
syl |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) ) |
| 5 |
|
disjlem19 |
⊢ ( 𝑥 ∈ V → ( Disj 𝑅 → ( ( 𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [ 𝑢 ] 𝑅 ) → [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) ) ) |
| 6 |
5
|
elv |
⊢ ( Disj 𝑅 → ( ( 𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [ 𝑢 ] 𝑅 ) → [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) ) |
| 7 |
6
|
ralrimivv |
⊢ ( Disj 𝑅 → ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) |
| 8 |
|
2r19.29 |
⊢ ( ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) ) |
| 9 |
8
|
ex |
⊢ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 → ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) ) ) |
| 10 |
7 9
|
syl |
⊢ ( Disj 𝑅 → ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) ) ) |
| 11 |
4 10
|
sylbid |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) ) ) |
| 12 |
|
eqtr |
⊢ ( ( 𝑣 = [ 𝑢 ] 𝑅 ∧ [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) → 𝑣 = [ 𝑥 ] ≀ 𝑅 ) |
| 13 |
12
|
ancoms |
⊢ ( ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) → 𝑣 = [ 𝑥 ] ≀ 𝑅 ) |
| 14 |
13
|
reximi |
⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) → ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) |
| 15 |
14
|
reximi |
⊢ ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) |
| 16 |
11 15
|
syl6 |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) |
| 17 |
|
releldmqscoss |
⊢ ( 𝑣 ∈ V → ( Rel 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) ) |
| 18 |
17
|
elv |
⊢ ( Rel 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) |
| 19 |
1 18
|
syl |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) |
| 20 |
16 19
|
sylibrd |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) → 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ) ) |
| 21 |
20
|
ssrdv |
⊢ ( Disj 𝑅 → ( dom 𝑅 / 𝑅 ) ⊆ ( dom ≀ 𝑅 / ≀ 𝑅 ) ) |