Step |
Hyp |
Ref |
Expression |
1 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ↔ ∃ 𝑦 ( 𝑦 ∈ dom 𝑅 ∧ ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ) ) |
2 |
|
an32 |
⊢ ( ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ↔ ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ∧ 𝑦 ∈ dom 𝑅 ) ) |
3 |
|
disjlem14 |
⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) ) |
4 |
|
eleq2 |
⊢ ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑥 ] 𝑅 ↔ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ) |
5 |
4
|
biimprd |
⊢ ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) |
6 |
3 5
|
syl8 |
⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑦 ] 𝑅 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) |
7 |
6
|
exp4a |
⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝐴 ∈ [ 𝑥 ] 𝑅 → ( 𝐴 ∈ [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) ) |
8 |
7
|
impd |
⊢ ( Disj 𝑅 → ( ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐴 ∈ [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) |
9 |
2 8
|
biimtrrid |
⊢ ( Disj 𝑅 → ( ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝐴 ∈ [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) |
10 |
9
|
expd |
⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝑦 ∈ dom 𝑅 → ( 𝐴 ∈ [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) ) |
11 |
10
|
imp5a |
⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝑦 ∈ dom 𝑅 → ( ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) |
12 |
11
|
imp4b |
⊢ ( ( Disj 𝑅 ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( ( 𝑦 ∈ dom 𝑅 ∧ ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) |
13 |
12
|
exlimdv |
⊢ ( ( Disj 𝑅 ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( ∃ 𝑦 ( 𝑦 ∈ dom 𝑅 ∧ ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) |
14 |
1 13
|
biimtrid |
⊢ ( ( Disj 𝑅 ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) |
15 |
14
|
ex |
⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |