Metamath Proof Explorer


Theorem disjlem17

Description: Lemma for disjdmqseq , partim2 and petlem via disjlem18 , (general version of the former prtlem17 ). (Contributed by Peter Mazsa, 10-Sep-2021)

Ref Expression
Assertion disjlem17 ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 df-rex ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) ↔ ∃ 𝑦 ( 𝑦 ∈ dom 𝑅 ∧ ( 𝐴 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) ) )
2 an32 ( ( ( 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅 ) ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ↔ ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) ∧ 𝑦 ∈ dom 𝑅 ) )
3 disjlem14 ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅 ) → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐴 ∈ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) )
4 eleq2 ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑥 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) )
5 4 biimprd ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) )
6 3 5 syl8 ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅 ) → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐴 ∈ [ 𝑦 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) )
7 6 exp4a ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅 ) → ( 𝐴 ∈ [ 𝑥 ] 𝑅 → ( 𝐴 ∈ [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) )
8 7 impd ( Disj 𝑅 → ( ( ( 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅 ) ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐴 ∈ [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) )
9 2 8 biimtrrid ( Disj 𝑅 → ( ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝐴 ∈ [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) )
10 9 expd ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝑦 ∈ dom 𝑅 → ( 𝐴 ∈ [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) )
11 10 imp5a ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝑦 ∈ dom 𝑅 → ( ( 𝐴 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) )
12 11 imp4b ( ( Disj 𝑅 ∧ ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( ( 𝑦 ∈ dom 𝑅 ∧ ( 𝐴 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) )
13 12 exlimdv ( ( Disj 𝑅 ∧ ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( ∃ 𝑦 ( 𝑦 ∈ dom 𝑅 ∧ ( 𝐴 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) )
14 1 13 biimtrid ( ( Disj 𝑅 ∧ ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) )
15 14 ex ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) )