Step |
Hyp |
Ref |
Expression |
1 |
|
rspe |
⊢ ( ( 𝑥 ∈ dom 𝑅 ∧ ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) → ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) |
2 |
1
|
expr |
⊢ ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 → ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
3 |
2
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 → ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
4 |
|
relbrcoss |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( Rel 𝑅 → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) |
5 |
|
disjrel |
⊢ ( Disj 𝑅 → Rel 𝑅 ) |
6 |
4 5
|
impel |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
8 |
3 7
|
sylibrd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 → 𝐴 ≀ 𝑅 𝐵 ) ) |
9 |
8
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 → 𝐴 ≀ 𝑅 𝐵 ) ) ) |
10 |
|
disjlem17 |
⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
12 |
|
relbrcoss |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( Rel 𝑅 → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ) ) ) |
13 |
12 5
|
impel |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ) ) |
14 |
13
|
imbi1d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝐴 ≀ 𝑅 𝐵 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ↔ ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
15 |
11 14
|
sylibrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐴 ≀ 𝑅 𝐵 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
16 |
9 15
|
impbidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 ↔ 𝐴 ≀ 𝑅 𝐵 ) ) ) |
17 |
16
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 ↔ 𝐴 ≀ 𝑅 𝐵 ) ) ) ) |