Metamath Proof Explorer


Theorem disjlem18

Description: Lemma for disjdmqseq , partim2 and petlem via disjlem19 , (general version of the former prtlem18 ). (Contributed by Peter Mazsa, 16-Sep-2021)

Ref Expression
Assertion disjlem18 ( ( 𝐴𝑉𝐵𝑊 ) → ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅𝐴𝑅 𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 rspe ( ( 𝑥 ∈ dom 𝑅 ∧ ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) → ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) )
2 1 expr ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 → ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) )
3 2 adantl ( ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅 → ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) )
4 relbrcoss ( ( 𝐴𝑉𝐵𝑊 ) → ( Rel 𝑅 → ( 𝐴𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) )
5 disjrel ( Disj 𝑅 → Rel 𝑅 )
6 4 5 impel ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Disj 𝑅 ) → ( 𝐴𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) )
7 6 adantr ( ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝐴𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) )
8 3 7 sylibrd ( ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅𝐴𝑅 𝐵 ) )
9 8 ex ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅𝐴𝑅 𝐵 ) ) )
10 disjlem17 ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) )
11 10 adantl ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) )
12 relbrcoss ( ( 𝐴𝑉𝐵𝑊 ) → ( Rel 𝑅 → ( 𝐴𝑅 𝐵 ↔ ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) ) ) )
13 12 5 impel ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Disj 𝑅 ) → ( 𝐴𝑅 𝐵 ↔ ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) ) )
14 13 imbi1d ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝐴𝑅 𝐵𝐵 ∈ [ 𝑥 ] 𝑅 ) ↔ ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) )
15 11 14 sylibrd ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐴𝑅 𝐵𝐵 ∈ [ 𝑥 ] 𝑅 ) ) )
16 9 15 impbidd ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Disj 𝑅 ) → ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅𝐴𝑅 𝐵 ) ) )
17 16 ex ( ( 𝐴𝑉𝐵𝑊 ) → ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑥 ] 𝑅𝐴𝑅 𝐵 ) ) ) )