Metamath Proof Explorer


Theorem disjlem18

Description: Lemma for disjdmqseq , partim2 and petlem via disjlem19 , (general version of the former prtlem18 ). (Contributed by Peter Mazsa, 16-Sep-2021)

Ref Expression
Assertion disjlem18 AVBWDisjRxdomRAxRBxRARB

Proof

Step Hyp Ref Expression
1 rspe xdomRAxRBxRxdomRAxRBxR
2 1 expr xdomRAxRBxRxdomRAxRBxR
3 2 adantl AVBWDisjRxdomRAxRBxRxdomRAxRBxR
4 relbrcoss AVBWRelRARBxdomRAxRBxR
5 disjrel DisjRRelR
6 4 5 impel AVBWDisjRARBxdomRAxRBxR
7 6 adantr AVBWDisjRxdomRAxRARBxdomRAxRBxR
8 3 7 sylibrd AVBWDisjRxdomRAxRBxRARB
9 8 ex AVBWDisjRxdomRAxRBxRARB
10 disjlem17 DisjRxdomRAxRydomRAyRByRBxR
11 10 adantl AVBWDisjRxdomRAxRydomRAyRByRBxR
12 relbrcoss AVBWRelRARBydomRAyRByR
13 12 5 impel AVBWDisjRARBydomRAyRByR
14 13 imbi1d AVBWDisjRARBBxRydomRAyRByRBxR
15 11 14 sylibrd AVBWDisjRxdomRAxRARBBxR
16 9 15 impbidd AVBWDisjRxdomRAxRBxRARB
17 16 ex AVBWDisjRxdomRAxRBxRARB