Step |
Hyp |
Ref |
Expression |
1 |
|
inidm |
⊢ ( 𝐵 ∩ 𝐵 ) = 𝐵 |
2 |
1
|
eqeq1i |
⊢ ( ( 𝐵 ∩ 𝐵 ) = ∅ ↔ 𝐵 = ∅ ) |
3 |
2
|
orbi1i |
⊢ ( ( ( 𝐵 ∩ 𝐵 ) = ∅ ∨ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ) ↔ ( 𝐵 = ∅ ∨ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ) ) |
4 |
|
eqidd |
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐵 ) |
5 |
4
|
disjor |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐵 ∩ 𝐵 ) = ∅ ) ) |
6 |
|
orcom |
⊢ ( ( 𝑥 = 𝑦 ∨ ( 𝐵 ∩ 𝐵 ) = ∅ ) ↔ ( ( 𝐵 ∩ 𝐵 ) = ∅ ∨ 𝑥 = 𝑦 ) ) |
7 |
6
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐵 ∩ 𝐵 ) = ∅ ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝐵 ∩ 𝐵 ) = ∅ ∨ 𝑥 = 𝑦 ) ) |
8 |
|
r19.32v |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐵 ∩ 𝐵 ) = ∅ ∨ 𝑥 = 𝑦 ) ↔ ( ( 𝐵 ∩ 𝐵 ) = ∅ ∨ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ) ) |
9 |
7 8
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐵 ∩ 𝐵 ) = ∅ ) ↔ ( ( 𝐵 ∩ 𝐵 ) = ∅ ∨ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ) ) |
10 |
9
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐵 ∩ 𝐵 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐵 ∩ 𝐵 ) = ∅ ∨ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ) ) |
11 |
|
r19.32v |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐵 ∩ 𝐵 ) = ∅ ∨ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ) ↔ ( ( 𝐵 ∩ 𝐵 ) = ∅ ∨ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ) ) |
12 |
5 10 11
|
3bitri |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ( ( 𝐵 ∩ 𝐵 ) = ∅ ∨ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ) ) |
13 |
|
moel |
⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ) |
14 |
13
|
orbi2i |
⊢ ( ( 𝐵 = ∅ ∨ ∃* 𝑥 𝑥 ∈ 𝐴 ) ↔ ( 𝐵 = ∅ ∨ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ) ) |
15 |
3 12 14
|
3bitr4i |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐵 = ∅ ∨ ∃* 𝑥 𝑥 ∈ 𝐴 ) ) |