Metamath Proof Explorer


Theorem disjnf

Description: In case x is not free in B , disjointness is not so interesting since it reduces to cases where A is a singleton. (Google Groups discussion with Peter Mazsa.) (Contributed by Thierry Arnoux, 26-Jul-2018)

Ref Expression
Assertion disjnf ( Disj 𝑥𝐴 𝐵 ↔ ( 𝐵 = ∅ ∨ ∃* 𝑥 𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 inidm ( 𝐵𝐵 ) = 𝐵
2 1 eqeq1i ( ( 𝐵𝐵 ) = ∅ ↔ 𝐵 = ∅ )
3 2 orbi1i ( ( ( 𝐵𝐵 ) = ∅ ∨ ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 ) ↔ ( 𝐵 = ∅ ∨ ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 ) )
4 eqidd ( 𝑥 = 𝑦𝐵 = 𝐵 )
5 4 disjor ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐵𝐵 ) = ∅ ) )
6 orcom ( ( 𝑥 = 𝑦 ∨ ( 𝐵𝐵 ) = ∅ ) ↔ ( ( 𝐵𝐵 ) = ∅ ∨ 𝑥 = 𝑦 ) )
7 6 ralbii ( ∀ 𝑦𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐵𝐵 ) = ∅ ) ↔ ∀ 𝑦𝐴 ( ( 𝐵𝐵 ) = ∅ ∨ 𝑥 = 𝑦 ) )
8 r19.32v ( ∀ 𝑦𝐴 ( ( 𝐵𝐵 ) = ∅ ∨ 𝑥 = 𝑦 ) ↔ ( ( 𝐵𝐵 ) = ∅ ∨ ∀ 𝑦𝐴 𝑥 = 𝑦 ) )
9 7 8 bitri ( ∀ 𝑦𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐵𝐵 ) = ∅ ) ↔ ( ( 𝐵𝐵 ) = ∅ ∨ ∀ 𝑦𝐴 𝑥 = 𝑦 ) )
10 9 ralbii ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐵𝐵 ) = ∅ ) ↔ ∀ 𝑥𝐴 ( ( 𝐵𝐵 ) = ∅ ∨ ∀ 𝑦𝐴 𝑥 = 𝑦 ) )
11 r19.32v ( ∀ 𝑥𝐴 ( ( 𝐵𝐵 ) = ∅ ∨ ∀ 𝑦𝐴 𝑥 = 𝑦 ) ↔ ( ( 𝐵𝐵 ) = ∅ ∨ ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 ) )
12 5 10 11 3bitri ( Disj 𝑥𝐴 𝐵 ↔ ( ( 𝐵𝐵 ) = ∅ ∨ ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 ) )
13 moel ( ∃* 𝑥 𝑥𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 )
14 13 orbi2i ( ( 𝐵 = ∅ ∨ ∃* 𝑥 𝑥𝐴 ) ↔ ( 𝐵 = ∅ ∨ ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 ) )
15 3 12 14 3bitr4i ( Disj 𝑥𝐴 𝐵 ↔ ( 𝐵 = ∅ ∨ ∃* 𝑥 𝑥𝐴 ) )