Metamath Proof Explorer


Theorem disjnf

Description: In case x is not free in B , disjointness is not so interesting since it reduces to cases where A is a singleton. (Google Groups discussion with Peter Mazsa.) (Contributed by Thierry Arnoux, 26-Jul-2018)

Ref Expression
Assertion disjnf
|- ( Disj_ x e. A B <-> ( B = (/) \/ E* x x e. A ) )

Proof

Step Hyp Ref Expression
1 inidm
 |-  ( B i^i B ) = B
2 1 eqeq1i
 |-  ( ( B i^i B ) = (/) <-> B = (/) )
3 2 orbi1i
 |-  ( ( ( B i^i B ) = (/) \/ A. x e. A A. y e. A x = y ) <-> ( B = (/) \/ A. x e. A A. y e. A x = y ) )
4 eqidd
 |-  ( x = y -> B = B )
5 4 disjor
 |-  ( Disj_ x e. A B <-> A. x e. A A. y e. A ( x = y \/ ( B i^i B ) = (/) ) )
6 orcom
 |-  ( ( x = y \/ ( B i^i B ) = (/) ) <-> ( ( B i^i B ) = (/) \/ x = y ) )
7 6 ralbii
 |-  ( A. y e. A ( x = y \/ ( B i^i B ) = (/) ) <-> A. y e. A ( ( B i^i B ) = (/) \/ x = y ) )
8 r19.32v
 |-  ( A. y e. A ( ( B i^i B ) = (/) \/ x = y ) <-> ( ( B i^i B ) = (/) \/ A. y e. A x = y ) )
9 7 8 bitri
 |-  ( A. y e. A ( x = y \/ ( B i^i B ) = (/) ) <-> ( ( B i^i B ) = (/) \/ A. y e. A x = y ) )
10 9 ralbii
 |-  ( A. x e. A A. y e. A ( x = y \/ ( B i^i B ) = (/) ) <-> A. x e. A ( ( B i^i B ) = (/) \/ A. y e. A x = y ) )
11 r19.32v
 |-  ( A. x e. A ( ( B i^i B ) = (/) \/ A. y e. A x = y ) <-> ( ( B i^i B ) = (/) \/ A. x e. A A. y e. A x = y ) )
12 5 10 11 3bitri
 |-  ( Disj_ x e. A B <-> ( ( B i^i B ) = (/) \/ A. x e. A A. y e. A x = y ) )
13 moel
 |-  ( E* x x e. A <-> A. x e. A A. y e. A x = y )
14 13 orbi2i
 |-  ( ( B = (/) \/ E* x x e. A ) <-> ( B = (/) \/ A. x e. A A. y e. A x = y ) )
15 3 12 14 3bitr4i
 |-  ( Disj_ x e. A B <-> ( B = (/) \/ E* x x e. A ) )