Metamath Proof Explorer


Theorem dmfcoafv

Description: Domains of a function composition, analogous to dmfco . (Contributed by Alexander van der Vekens, 23-Jul-2017)

Ref Expression
Assertion dmfcoafv ( ( Fun 𝐺𝐴 ∈ dom 𝐺 ) → ( 𝐴 ∈ dom ( 𝐹𝐺 ) ↔ ( 𝐺 ''' 𝐴 ) ∈ dom 𝐹 ) )

Proof

Step Hyp Ref Expression
1 dmfco ( ( Fun 𝐺𝐴 ∈ dom 𝐺 ) → ( 𝐴 ∈ dom ( 𝐹𝐺 ) ↔ ( 𝐺𝐴 ) ∈ dom 𝐹 ) )
2 funres ( Fun 𝐺 → Fun ( 𝐺 ↾ { 𝐴 } ) )
3 2 anim2i ( ( 𝐴 ∈ dom 𝐺 ∧ Fun 𝐺 ) → ( 𝐴 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝐴 } ) ) )
4 3 ancoms ( ( Fun 𝐺𝐴 ∈ dom 𝐺 ) → ( 𝐴 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝐴 } ) ) )
5 df-dfat ( 𝐺 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝐴 } ) ) )
6 afvfundmfveq ( 𝐺 defAt 𝐴 → ( 𝐺 ''' 𝐴 ) = ( 𝐺𝐴 ) )
7 5 6 sylbir ( ( 𝐴 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝐴 } ) ) → ( 𝐺 ''' 𝐴 ) = ( 𝐺𝐴 ) )
8 4 7 syl ( ( Fun 𝐺𝐴 ∈ dom 𝐺 ) → ( 𝐺 ''' 𝐴 ) = ( 𝐺𝐴 ) )
9 8 eqcomd ( ( Fun 𝐺𝐴 ∈ dom 𝐺 ) → ( 𝐺𝐴 ) = ( 𝐺 ''' 𝐴 ) )
10 9 eleq1d ( ( Fun 𝐺𝐴 ∈ dom 𝐺 ) → ( ( 𝐺𝐴 ) ∈ dom 𝐹 ↔ ( 𝐺 ''' 𝐴 ) ∈ dom 𝐹 ) )
11 1 10 bitrd ( ( Fun 𝐺𝐴 ∈ dom 𝐺 ) → ( 𝐴 ∈ dom ( 𝐹𝐺 ) ↔ ( 𝐺 ''' 𝐴 ) ∈ dom 𝐹 ) )