| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmfco |
⊢ ( ( Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺 ) → ( 𝐴 ∈ dom ( 𝐹 ∘ 𝐺 ) ↔ ( 𝐺 ‘ 𝐴 ) ∈ dom 𝐹 ) ) |
| 2 |
|
funres |
⊢ ( Fun 𝐺 → Fun ( 𝐺 ↾ { 𝐴 } ) ) |
| 3 |
2
|
anim2i |
⊢ ( ( 𝐴 ∈ dom 𝐺 ∧ Fun 𝐺 ) → ( 𝐴 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝐴 } ) ) ) |
| 4 |
3
|
ancoms |
⊢ ( ( Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺 ) → ( 𝐴 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝐴 } ) ) ) |
| 5 |
|
df-dfat |
⊢ ( 𝐺 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝐴 } ) ) ) |
| 6 |
|
afvfundmfveq |
⊢ ( 𝐺 defAt 𝐴 → ( 𝐺 ''' 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) |
| 7 |
5 6
|
sylbir |
⊢ ( ( 𝐴 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝐴 } ) ) → ( 𝐺 ''' 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) |
| 8 |
4 7
|
syl |
⊢ ( ( Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺 ) → ( 𝐺 ''' 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) |
| 9 |
8
|
eqcomd |
⊢ ( ( Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝐴 ) = ( 𝐺 ''' 𝐴 ) ) |
| 10 |
9
|
eleq1d |
⊢ ( ( Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺 ) → ( ( 𝐺 ‘ 𝐴 ) ∈ dom 𝐹 ↔ ( 𝐺 ''' 𝐴 ) ∈ dom 𝐹 ) ) |
| 11 |
1 10
|
bitrd |
⊢ ( ( Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺 ) → ( 𝐴 ∈ dom ( 𝐹 ∘ 𝐺 ) ↔ ( 𝐺 ''' 𝐴 ) ∈ dom 𝐹 ) ) |